

14

Note For information about writing Windows PowerShell scripts and about using the For
loop, see Chapter 5.

When the UpdateHelpTrackErrors script runs, a progress bar is shown, indicating the progress as
the updatable help files update. When the script is finished, any errors appear in order. The script and
associated errors are shown in Figure 1-2.

FIGURE 1-2 Cleaner error output from updatable help is generated by the UpdateHelpTrackErrors script.

You can also determine which modules receive updated help by running the Update-Help cmdlet
with the -Verbose switch parameter. Unfortunately, when you do this, the output scrolls by so fast
that it is hard to see what has actually updated. To solve this problem, redirect the verbose output to
a text file. In the command that follows, all modules attempt to update help. The verbose messages
redirect to a text file named updatedhelp.txt in a folder named fso off the root.

Update-Help -module * -force -verbose 4>>c:\fso\updatedhelp.txt

Windows PowerShell has a high level of discoverability; that is, to learn how to use Windows
PowerShell, you can simply use Windows PowerShell. Online help serves an important role in assisting
in this discoverability. The help system in Windows PowerShell can be entered by several methods.

Windows PowerShell Step by Step, Third Edition

To learn about using Windows PowerShell, use the Get-Help cmdlet as follows.

Get-Help Get-Help
This command prints out help about the Get-Help cmdlet. The output from this cmdlet is
illustrated here:

NAME
Get-Help

SYNOPSIS
Displays information about Windows PowerShell commands and concepts.

SYNTAX
Get-Help [[-Name] <String>] [-Category <String[]>] [-Component <String[]>]
[-Ful1] [-Functionality <String[]>] [-Path <String>] [-Role <String[]>]
[<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String[]>] [-Component <String[]>]
[-Functionality <String[]>] [-Path <String>] [-Role <String[]>] -Detailed
[<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String[]>] [-Component <String[]>]
[-Functionality <String[]>] [-Path <String>] [-Role <String[]>] -Examples
[<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String[]>] [-Component <String[]>]
[-Functionality <String[]>] [-Path <String>] [-Role <String[]>] -Online
[<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String[]>] [-Component <String[]>]
[-Functionality <String[]>] [-Path <String>] [-Role <String[]>] -Parameter
<String> [<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String[]>] [-Component <String[]>]
[-Functionality <String[]>] [-Path <String>] [-Role <String[]>] -ShowWindow
[<CommonParameters>]

DESCRIPTION
The Get-Help cmdlet displays information about Windows PowerShell concepts and
commands, including cmdlets, functions, CIM commands, workflows, providers,
aliases and scripts.

To get help for a Windows PowerShell command, type "Get-Help" followed by the
command name, such as: Get-Help Get-Process. To get a list of all help topics
on your system, type: Get-Help *. You can display the entire help topic or use
the parameters of the Get-Help cmdlet to get selected parts of the topic, such
as the syntax, parameters, or examples.

Conceptual help topics in Windows PowerShell begin with "about_", such as
"about_Comparison_Operators". To see all "about_" topics, type: Get-Help
about_*. To see a particular topic, type: Get-Help about_<topic-name>, such as
Get-Help about_Comparison_Operators.

Overview of Windows PowerShell 5.0

15

16

To get help for a Windows PowerShell provider, type "Get-Help" followed by the
provider name. For example, to get help for the Certificate provider, type:
Get-Help Certificate.

In addition to "Get-Help", you can also type "help" or "man", which displays
one screen of text at a time, or "<cmdlet-name> -?", which is identical to
Get-Help but works only for commands.

Get-Help gets the help content that it displays from help files on your
computer. Without the help files, Get-Help displays only basic information
about commands. Some Windows PowerShell modules come with help files. However,
beginning in Windows PowerShell 3.0, the modules that come with Windows do not
include help files. To download or update the help files for a module in
Windows PowerShell 3.0, use the Update-Help cmdlet.

You can also view the help topics for Windows PowerShell online in the TechNet
Library. To get the online version of a help topic, use the Online parameter,
such as: Get-Help Get-Process -Online. You can read all of the help topics
beginning at: http://go.microsoft.com/fwlink/?LinkID=107116.

If you type "Get-Help" followed by the exact name of a help topic, or by a word
unique to a help topic, Get-Help displays the topic contents. If you enter a
word or word pattern that appears in several help topic titles, Get-Help
displays a Tist of the matching titles. If you enter a word that does not
appear in any help topic titles, Get-Help displays a list of topics that
include that word in their contents.

Get-Help can get help topics for all supported languages and locales. Get-Help
first looks for help files in the Tocale set for Windows, then in the parent
Tocale (such as "pt" for "pt-BR"), and then in a fallback locale. Beginning in
Windows PowerShell 3.0, if Get-Help does not find help in the fallback locale,
it looks for help topics in English ("en-US") before returning an error message
or displaying auto-generated help.

For information about the symbols that Get-Help displays in the command syntax
diagram, see about_Command_Syntax. For information about parameter attributes,
such as Required and Position, see about_Parameters.

TROUBLESHOOTING NOTE: In Windows PowerShell 3.0 and 4.0, Get-Help cannot find
About topics in modules unless the module is imported into the current session.
This is a known issue. To get About topics in a module, import the module,
either by using the Import-Module cmdlet or by running a cmdlet in the module.

RELATED LINKS

Online Version: http://go.microsoft.com/fwlink/p/?1inkid=289584

Updatable Help Status Table (http://go.microsoft.com/fwlink/?LinkID=270007)
Get-Command

Get-Member

Get-PSDrive

about_Command_Syntax

about_Comment_Based_Help

about_Parameters

Windows PowerShell Step by Step, Third Edition

REMARKS
To see the examples, type: "get-help Get-Help -examples".
For more information, type: "get-help Get-Help -detailed".
For technical information, type: "get-help Get-Help -full".
For online help, type: "get-help Get-Help -online"

The good thing about help with Windows PowerShell is that it not only displays help about cmdlets,
which you would expect, but it also has three levels of display: normal, detailed, and full. Additionally,
you can obtain help about concepts in Windows PowerShell. This last feature is equivalent to having
an online instruction manual. To retrieve a listing of all the conceptual help articles, use the Get-Help
about* command, as follows.

Get-Help about*

Suppose you do not remember the exact name of the cmdlet you want to use, but you remember
it was a get cmdlet. You can use a wildcard, such as an asterisk (*), to obtain the name of the cmdlet.
This is shown here.

Get-Help get*

This technique of using a wildcard operator can be extended further. If you remember that the
cmdlet was a get cmdlet, and that it started with the letter p, you can use the following syntax to
retrieve the cmdlet you're looking for.

Get-Help get-p*

Suppose, however, that you know the exact name of the cmdlet, but you cannot exactly remember
the syntax. For this scenario, you can use the -Examples switch parameter. For example, for the Get-
PSDrive cmdlet, you would use Get-Help with the -Examples switch parameter, as follows.

Get-Help Get-PSDrive -examples

To view help displayed one page at a time, you can use the Help function. The Help function passes
your input to the Get-Help cmdlet, and pipelines the resulting information to the more.com utility.
This causes output to display one page at a time in the Windows PowerShell console. This is useful if
you want to avoid scrolling up and down to view the help output.

Note Keep in mind that in the Windows PowerShell ISE, the pager does not work, and
therefore you will find no difference in output between Get-Help and Help. In the ISE,
both Get-Help and Help behave the same way. However, it is likely that if you are using the
Windows PowerShell ISE, you will use Show-Command for your help instead of relying on
Get-Help.

This formatted output is shown in Figure 1-3.

Overview of Windows PowerShell 5.0 17

B powershell — [m] X

FIGURE 1-3 Use Help to display information one page at a time.

Getting tired of typing Get-Help all the time? After all, it is eight characters long. The solution is to
create an alias to the Get-Help cmdlet. An alias is a shortcut keystroke combination that will launch a
program or cmdlet when entered. In the “Creating an alias for the Get-Help cmdlet” procedure, you
will assign the Get-Help cmdlet to the G+H key combination.

Note When creating an alias for a cmdlet, confirm that it does not already have an alias by
using Get-Alias. Use New-Alias to assign the cmdlet to a unique keystroke combination.

Creating an alias for the Get-Help cmdlet

1. Open Windows PowerShell by choosing Start | Run | PowerShell. The Windows PowerShell
prompt opens by default at the root of your user folder.

2. Retrieve an alphabetic listing of all currently defined aliases, and inspect the list for one
assigned to either the Get-Help cmdlet or the keystroke combination G+H. The command to
do this is as follows.

Get-Alias | sort

18 Windows PowerShell Step by Step, Third Edition

3.

After you have determined that there is no alias for the Get-Help cmdlet and that none is
assigned to the G+H keystroke combination, review the syntax for the New-Alias cmdlet.
Use the -Full switch parameter to the Get-Help cmdlet. This is shown here.

Get-Help New-Alias -full

Use the New-Alias cmdlet to assign the G+H keystroke combination to the Get-Help cmdlet.
To do this, use the following command.

New-Alias gh Get-Help

Exploring commands: Step-by-step exercises

In the following exercises, you'll explore the use of command-line utilities in Windows PowerShell. You
will find that it is as easy to use command-line utilities in Windows PowerShell as in the CMD inter-

preter; however, by using such commands in Windows PowerShell, you gain access to new levels of
functionality.

Using command-line utilities

1.

Open Windows PowerShell by choosing Start | Run | PowerShell. The Windows PowerShell
prompt opens by default at the root of your user folder.

Change to the root of C:\ by entering cd c:\ inside the Windows PowerShell prompt.
cd c:\

Obtain a listing of all the files in the root of C:\ by using the dir command.

dir

Create a directory off the root of C:\ by using the md command.

md mytest

Obtain a listing of all files and folders off the root that begin with the letter m.

dir m*

Change the working directory to the Windows PowerShell working directory. You can do this
by using the Set-Location command, as follows.

Set-Location $pshome

Overview of Windows PowerShell 5.0 19

20

10.

11.

12.

13.

14.

15.

16.

Obtain a listing of memory counters related to the available bytes by using the typeperf.exe
command. This command is shown here.

typeperf "\memory\available bytes"

After a few counters have been displayed in the Windows PowerShell window, press Ctrl+C to
break the listing.

Display the current startup configuration by using the bcdedit command (note that you must
run this command with admin rights).

bcdedit
Change the working directory back to the C:\Mytest directory you created earlier.
Set-Location c:\mytest

Create a file named mytestfile.txt in the C:\Mytest directory. Use the fsutil utility, and make the
file 1,000 bytes in size. To do this, use the following command.

fsutil file createnew mytestfile.txt 1000

Obtain a directory listing of all the files in the C:\Mytest directory by using the Get-Childltem
cmdlet.

Print the current date by using the Get-Date cmdlet.
Clear the screen by using the c/s command.

Print a listing of all the cmdlets built into Windows PowerShell. To do this, use the
Get-Command cmdlet.

Use the Get-Command cmdlet to get the Get-Alias cmdlet. To do this, use the -Name
parameter while supplying Get-Alias as the value for the parameter. This is shown here.

Get-Command -name Get-Alias

This concludes the step-by-step exercise. Exit Windows PowerShell by entering exit and
pressing Enter.

In the following exercise, you'll use various help options to obtain assistance with various cmdlets.

Windows PowerShell Step by Step, Third Edition

Obtaining help

1.

Open Windows PowerShell by choosing Start | Run | PowerShell. The Windows PowerShell
prompt opens by default at the root of your user folder.

Use the Get-Help cmdlet to obtain help about the Get-Help cmdlet. Use the command
Get-Help Get-Help as follows.

Get-Help Get-Help

To obtain detailed help about the Get-Help cmdlet, use the -Detailed switch parameter,
as follows.

Get-Help Get-Help -detailed

To retrieve technical information about the Get-Help cmdlet, use the -Full switch parameter.
This is shown here.

Get-Help Get-Help -full

If you only want to obtain a listing of examples of command usage, use the -Examples switch
parameter, as follows.

Get-Help Get-Help -examples

Obtain a listing of all the informational help topics by using the Get-Help cmdlet and the
about noun with the asterisk (*) wildcard operator. The code to do this is shown here.

Get-Help about*

Obtain a listing of all the help topics related to get cmdlets. To do this, use the Get-Help
cmdlet, and specify the word get followed by the wildcard operator, as follows.

Get-Help get*

Obtain a listing of all the help topics related to set cmdlets. To do this, use the Get-Help
cmdlet, followed by the set verb, followed by the asterisk wildcard. This is shown here.

Get-Help set*

This concludes this exercise. Exit Windows PowerShell by entering exit and pressing Enter.

Overview of Windows PowerShell 5.0 21

Chapter 1 quick reference

22

To

Use an external command-line utility

Use multiple external command-line utilities
sequentially

Obtain a list of running processes

Stop a process

Model the effect of a cmdlet before actually
performing the requested action

Instruct Windows PowerShell to start up, run
a cmdlet, and then exit

Prompt for confirmation before stopping a
process

Do this

Enter the name of the command-line utility while inside Windows
PowerShell.

Separate each command-line utility with a semicolon on a single
Windows PowerShell line.

Use the Get-Process cmdlet.

Use the Stop-Process cmdlet and specify either the name or the process
ID parameter.

Use the -Whatlf switch parameter.
Use the PowerShell command while prefixing the cmdlet with & and
enclosing the name of the cmdlet in braces.

Use the Stop-Process cmdlet while specifying the -Confirm parameter.

Windows PowerShell Step by Step, Third Edition

Working with functions

After completing this chapter, you will be able to
m Understand functions.

m Use functions to provide ease of reuse.

m Use functions to encapsulate logic.

m Use functions to provide ease of modification.

There are clear-cut guidelines that can be used to design functions. These guidelines can be used to
ensure that functions are easy to understand, easy to maintain, and easy to troubleshoot. This chapter
examines the reasons for the scripting guidelines and provides examples of both good and bad code
design.

Understanding functions

In Windows PowerShell, functions have moved to the forefront as the primary programming element
used when writing Windows PowerShell scripts. This is not necessarily due to improvements in functions
per se, but rather to a combination of factors, including the maturity of Windows PowerShell script
writers. In Windows PowerShell 1.0, functions were not well understood, perhaps due to the lack of
clear documentation as to their use, purpose, and application.

Microsoft Visual Basic Scripting Edition (VBScript) included both subroutines and functions.
According to the classic definitions, a subroutine was used to encapsulate code that would do things
like write to a database or create a Microsoft Word document. Functions, on the other hand, were
used to return a value. An example of a classic VBScript function is one that converts a temperature
from Fahrenheit to Celsius. The function receives a value in Fahrenheit and returns the value
in Celsius. The classic function always returns a value—if it does not, a subroutine should be used
instead.

179

Note Needless to say, the concepts of functions and subroutines were a bit confusing for
many VBScript writers. A common question | used to receive when teaching VBScript classes
was, “When do | use a subroutine and when do | use a function?” After expounding the
classic definition, | would then show them that you could actually write a subroutine that
would behave like a function. Next, | would write a function that acted like a subroutine. It
was great fun, and the class loved it. The Windows PowerShell team has essentially done
the same thing. There is no confusion over when to use a subroutine and when to use a
function, because there are no subroutines in Windows PowerShell—only functions.

To create a function in Windows PowerShell, you begin with the Function keyword, followed by the
name of the function. As a best practice, use the Windows PowerShell verb-noun combination when
creating functions. Pick the verb from the standard list of Windows PowerShell verbs to make your
functions easier to remember. It is a best practice to avoid creating new verbs when there is an exist-
ing verb that can easily do the job.

An idea of the verb coverage can be obtained by using the Get-Command cmdlet and pipelining
the results to the Group-Object cmdlet. This is shown here.

Get-Command -CommandType cmdlet | Group-Object -Property Verb |
Sort-Object -Property count -Descending

When the preceding command is run, the resulting output is as follows. This command was run on
Windows 10 and includes cmdlets from the default modules. As shown in the listing, Get is used the
most by the default cmdlets, followed distantly by Set, New, and Remove.

Count Name Group

107 Get {Get-Ac1, Get-Alias, Get-AppLockerFileInformation...
49 Set {Set-Acl, Set-Alias, Set-AppBackgroundTaskResourc...
37 New {New-Alias, New-AppLockerPolicy, New-CertificateN...
29 Remove {Remove-AppxPackage, Remove-AppxProvisionedPackag...
17 Add {Add-AppxPackage, Add-AppxProvisionedPackage, Add...
15 Export {Export-Alias, Export-BinaryMiLog, Export-Certifi...
14 Disable {Disable-AppBackgroundTaskDiagnosticLog, Disable-...
14 Enable {Enable-AppBackgroundTaskDiagnosticLog, Enable-Co...
12 Import {Import-Alias, Import-BinaryMiLog, Import-Certifi...
11 Invoke {Invoke-CimMethod, Invoke-Command, Invoke-DscReso...
10 Clear {Clear-Content, Clear-EventLog, Clear-History, Cl...
10 Test {Test-AppLockerPolicy, Test-Certificate, Test-Com...
9 Write {Write-Debug, Write-Error, Write-EventLog, Write-...
9 Start {Start-BitsTransfer, Start-DscConfiguration, Star...
8 Register {Register-ArgumentCompleter, Register-CimIndicati...

7 Out {Out-Default, Out-File, Out-GridView, Out-Host...}
6 Stop {Stop-Computer, Stop-DtcDiagnosticResourceManager...
6 ConvertTo {ConvertTo-Csv, ConvertTo-Html, ConvertTo-Json, C...
5 Update {Update-FormatData, Update-Help, Update-List, Upd...
5 Format {Format-Custom, Format-List, Format-SecureBootUEF...
5 ConvertFrom {ConvertFrom-Csv, ConvertFrom-Json, ConvertFrom-S...

180 Windows PowerShell Step by Step, Third Edition

RPRRPRRPRRRRRPRRPRRPRPRRBERRREPRPRPRBPBHRBEBREFREPREREBNNNNNNNNNNNNNNNNNNWWWWWWWWWWADASDN

Wait
Unregister
Rename
Receive
Move
Suspend
Show
Debug
Complete
Select
Resume
Save
Unblock
Split
Undo
Restart
Resolve
Send
Convert
Use
Disconnect
Join
Exit
Enter
Copy
Expand
Measure
Connect
Mount
Dismount
Pop
Trace
Uninstall
Checkpoint
Tee
Unprotect
Where
Switch
Compare
Limit
Install
Protect
Optimize
ForEach
Find
Initialize
Group
Reset
Repair
Sort
Restore
Push
Publish
Confirm
Read

{Wait-Debugger, Wait-Event, Wait-Job, Wait-Process}
{Unregister-Event, Unregister-PackageSource, Unre...
{Rename-Computer, Rename-Item, Rename-ItemProperty}
{Receive-DtcDiagnosticTransaction, Receive-Job, R...
{Move-AppxPackage, Move-Item, Move-ItemProperty}
{Suspend-BitsTransfer, Suspend-Job, Suspend-Service}
{Show-Command, Show-ControlPanelItem, Show-EventLog}
{Debug-Job, Debug-Process, Debug-Runspace}
{Complete-BitsTransfer, Complete-DtcDiagnosticTra...
{Select-Object, Select-String, Select-Xml}
{Resume-BitsTransfer, Resume-Job, Resume-Service}
{Save-Help, Save-Package, Save-WindowsImage}
{Unblock-File, Unblock-Tpm}

{Sp1it-Path, Split-WindowsImage}
{Undo-DtcDiagnosticTransaction, Undo-Transaction}
{Restart-Computer, Restart-Service}
{Resolve-DnsName, Resolve-Path}
{Send-DtcDiagnosticTransaction, Send-MailMessage}
{Convert-Path, Convert-String}

{Use-Transaction, Use-WindowsUnattend}
{Disconnect-PSSession, Disconnect-WSMan}
{Join-DtcDiagnosticResourceManager, Join-Path}
{Exit-PSHostProcess, Exit-PSSession}
{Enter-PSHostProcess, Enter-PSSession}

{Copy-Item, Copy-ItemProperty}
{Expand-WindowsCustomDataImage, Expand-WindowsImage}
{Measure-Command, Measure-Object}
{Connect-PSSession, Connect-WSMan}
{Mount-AppxVolume, Mount-WindowsImage}
{Dismount-AppxVolume, Dismount-WindowsImage}
{Pop-Location}

{Trace-Command}

{Uninstall-Package}

{Checkpoint-Computer}

{Tee-Object}

{Unprotect-CmsMessage}

{Where-Object}

{Switch-Certificate}

{Compare-0Object}

{Limit-EventLog}

{Install-Package}

{Protect-CmsMessage}

{Optimize-WindowsImage}

{ForEach-Object}

{Find-Package}

{Initialize-Tpm}

{Group-Object}

{Reset-ComputerMachinePassword}
{Repair-WindowsImage}

{Sort-Object}

{Restore-Computer}

{Push-Location}

{Publish-DscConfiguration}

{Confirm-SecureBootUEFI}

{Read-Host}

Working with functions

181

A function is not required to accept any parameters. In fact, many functions do not require input
to perform their job in the script. Let's use an example to illustrate this point. A common task for
network administrators is obtaining the operating system version. Script writers often need to do
this to ensure that their script uses the correct interface or exits gracefully. It is also quite common
that one set of files would be copied to a desktop running one version of the operating system, and
a different set of files would be copied for another version of the operating system. The first step in
creating a function is to come up with a name. Because the function is going to retrieve information,
in the listing of cmdlet verbs shown earlier, the best verb to use is Get. For the noun portion of the
name, it is best to use something that describes the information that will be obtained. In this example,
a noun of OperatingSystemVersion makes sense. An example of such a function is shown in the Get-
OperatingSystemVersion.ps1 script. The Get-OperatingSystemVersion function uses Windows Manage-
ment Instrumentation (WMI) to obtain the version of the operating system. In this basic form of the
function, you have the function keyword followed by the name of the function, and a script block
with code in it, which is delimited by braces. This pattern is shown here.

Function Function-Name
{

#insert code here

}

In the Get-OperatingSystemVersion.psl script, the Get-OperatingSystemVersion function is at
the top of the script. It uses the Function keyword to define the function, followed by the name,
Get-OperatingSystemVersion. The script block opens, followed by the code, and then the script block
closes. The function uses the Get-Ciminstance cmdlet to retrieve an instance of the Win32_Operating-
System WMI class. Because this WMI class only returns a single instance, the properties of the class are
directly accessible. The version property is the one you'll work with, so use parentheses to force the
evaluation of the code inside. The returned management object is used to emit the version value. The
braces are used to close the script block. The operating system version is returned to the code that
calls the function. In this example, a string that writes This OS is version is used. A subexpression is
used to force evaluation of the function. The version of the operating system is returned to the place
where the function was called. This is shown here.

Get-OperatingSystemVersion.psl

Function Get-OperatingSystemVersion

{

(Get-CimInstance -Class Win32_OperatingSystem).Version
} #end Get-OperatingSystemVersion

"This 0S 1is version $(Get-OperatingSystemVersion)"

Now let's look at choosing the cmdlet verb. In the earlier listing of cmdlet verbs, there is one
cmdlet that uses the verb Read. It is the Read-Host cmdlet, which is used to obtain information from
the command line. This would indicate that the verb Read is not used to describe reading a file. There
is no verb called Display, and the Write verb is used in cmdlet names such as Write-Error and Write-
Debug, both of which do not really seem to have the concept of displaying information. If you were
writing a function that would read the content of a text file and display statistics about that file, you
might call the function Get-TextStatistics. This is in keeping with cmdlet names such as Get-Process

182 Windows PowerShell Step by Step, Third Edition

and Get-Service, which include the concept of emitting their retrieved content within their essential
functionality. The Get-TextStatistics function accepts a single parameter called path. The interesting thing
about parameters for functions is that when you pass a value to the parameter, you use a hyphen.
When you refer to the value inside the function, it is a variable such as $path. To call the Get-TextStatistics

function, you have a couple of options. The first is to use the name of the function and put the
value inside parentheses. This is shown here.

Get-TextStatistics("C:\fso\mytext.txt")

This is a natural way to call the function, and it works when there is a single parameter. It does not
work when there are two or more parameters. Another way to pass a value to the function is to use

the hyphen and the parameter name. This is shown here.

Get-TextStatistics -path "C:\fso\mytext.txt"

Note from the previous example that no parentheses are required. You can also use positional

arguments when passing a value. In this usage, you omit the name of the parameter entirely and
simply place the value for the parameter following the call to the function. This is illustrated here.

Get-TextStatistics "C:\fso\mytext.txt"

Note The use of positional parameters works well when you are working from the
command line and want to speed things along by reducing the typing load. However,
it can be a bit confusing to rely on positional parameters, and in general | tend to avoid
them—even when working at the command line. This is because | often copy my work-

ing code from the console directly into a script, and as a result, | would need to retype the
command a second time to get rid of aliases and unnamed parameters. With the improve-
ments in tab expansion, | feel that the time saved by using positional parameters or partial

parameters does not sufficiently warrant the time involved in retyping commands when
they need to be transferred to scripts. The other reason for always using named param-
eters is that it helps you to be aware of the exact command syntax.

One additional way to pass a value to a function is to use partial parameter names. All that
is required is enough of the parameter name to disambiguate it from other parameters. This is
illustrated here.

Get-TextStatistics -p "C:\fso\mytext.txt"
The complete text of the Get-TextStatistics function is shown here.

Get-TextStatistics Function

Function Get-TextStatistics($path)

{

Get-Content -path $path |
Measure-Object -1line -character -word

}

Working with functions

183

Between Windows PowerShell 1.0 and Windows PowerShell 2.0, the number of verbs grew from
40 to 60. In Windows PowerShell 5.0, the number of verbs remained consistent at 98. The list of
approved verbs is shown here.

Add Clear Close Copy Enter Exit Find
Format Get Hide Join Lock Move New

Open Optimize Pop Push Redo Remove Rename
Reset Resize Search Select Set Show Skip
Split Step Switch Undo UnTock Watch Backup
Checkpoint Compare Compress Convert ConvertFrom ConvertTo Dismount
Edit Expand Export Group Import Initialize Limit
Merge Mount Out PubTish Restore Save Sync
UnpubTish Update Approve Assert Complete Confirm Deny
Disable Enable Install Invoke Register Request Restart
Resume Start Stop Submit Suspend Uninstall Unregister
Wait Debug Measure Ping Repair Resolve Test
Trace Connect Disconnect Read Receive Send Write
Block Grant Protect Revoke UnbTock Unprotect Use

After the function has been named, you should specify any parameters the function might require.
The parameters are contained within parentheses. In the Get-TextStatistics function, the function
accepts a single parameter: -path. When you have a function that accepts a single parameter, you
can pass the value to the function by placing the value for the parameter inside parentheses. This is
known as calling a function like a method, and is disallowed when you use Set-StrictMode with the
Latest value for the -Version parameter. The following command generates an error when the latest
strict mode is in effect—otherwise, it is a permissible way to call a function.

Get-TextLength("C:\fso\test.txt")

The path C:\fso\test.txt is passed to the Get-TextStatistics function via the -path parameter. Inside the
function, the string C:\fso\text.txt is contained in the $path variable. The $path variable lives only within
the confines of the Get-TextStatistics function. It is not available outside the scope of the function. It is
available from within child scopes of the Get-TextStatistics function. A child scope of Get-TextStatistics is
one that is created from within the Get-TextStatistics function. In the Get-TextStatisticsCallChildFunction.
psl script, the Write-Path function is called from within the Get-TextStatistics function. This means the
Write-Path function will have access to variables that are created within the Get-TextStatistics function.
This is the concept of variable scope, which is extremely important when working with functions. As you
use functions to separate the creation of objects, you must always be aware of where the objects get
created, and where you intend to use them. In the Get-TextStatisticsCallChildFunction, the $path variable
does not obtain its value until it is passed to the function. It therefore lives within the Get-TextStatistics
function. But because the Write-Path function is called from within the Get-TextStatistics function,
it inherits the variables from that scope. When you call a function from within another function,
variables created within the parent function are available to the child function. This is shown in the
Get-TextStatisticsCallChildFunction.psl script, which follows.

Get-TextStatisticsCallChildFunction.ps1

Function Get-TextStatistics($path)

{
Get-Content -path $path |

184 Windows PowerShell Step by Step, Third Edition

Measure-Object -1ine -character -word
Write-Path
}

Function Write-Path(Q)
{
"Inside Write-Path the “$path variable is equal to $path”

}

Get-TextStatistics(“C:\fso\test.txt”)
"OQutside the Get-TextStatistics function “$path is equal to $path"

Inside the Get-TextStatistics function, the $path variable is used to provide the path to the Get-
Content cmdlet. When the Write-Path function is called, nothing is passed to it. But inside the Write-
Path function, the value of $path is maintained. Outside both of the functions, however, $path does
not have any value. The output from running the script is shown here.

Lines Words Characters Property

Inside Write-Path the $path variable is equal to C:\fso\test.txt
Outside the Get-TextStatistics function $path is equal to

You will then need to open and close a script block. A pair of opening and closing braces is used to
delimit the script block on a function. As a best practice, when writing a function, | will always use the
Function keyword, and type in the name, the input parameters, and the braces for the script block at
the same time. This is shown here.

Function My-Function

{

#insert code here

}

In this manner, | make sure | do not forget to close the braces. Trying to identify a missing brace
within a long script can be somewhat problematic, because the error that is presented does not
always correspond to the line that is missing the brace. For example, suppose the closing brace is left
off the Get-TextStatistics function, as shown in the Get-TextStatisticsCallChildFunction-DoesNOTWork-
MissingClosingBrace.ps1 script. An error will be generated, as shown here.

Missing closing '}' in statement block.
At C:\Scripts\Get-TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBracket.psl:28
char:1

The problem is that the position indicator of the error message points to the first character on line
28. Line 28 happens to be the first blank line after the end of the script. This means that Windows
PowerShell scanned the entire script looking for the closing brace. Because it did not find it, it states
that the error is at the end of the script. If you were to place a closing brace on line 28, the error in this
example would go away, but the script would not work. The Get-TextStatisticsCallChildFunction-
DoesNOTWork-MissingClosingBracket.psl script is shown here, with a comment that indicates where
the missing closing brace should be placed.

Working with functions 185

Get-TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBrace.ps1

Function Get-TextStatistics($path)

{

Get-Content -path $path
Measure-Object -1ine -character -word
Write-Path

Here is where the missing brace goes

Function Write-Path()

{
"Inside Write-Path the “$path variable is equal to $path”

}
Get-TextStatistics("C:\fso\test.txt")
Write-Host "Outside the Get-TextStatistics function “$path is equal to $path”

One other technique to guard against the problem of the missing brace is to add a comment to
the closing brace of each function.

Using functions to provide ease of code reuse

When scripts are written using well-designed functions, it makes it easier to reuse them in other
scripts, and to provide access to these functions from within the Windows PowerShell console. To get
access to these functions, you will need to dot-source the containing script by placing a dot in front of
the path to the script when you call it, and put the functions in a module or load them via the profile.
An issue with dot-sourcing scripts to bring in functions is that often the scripts might contain global
variables or other items you do not want to bring into your current environment.

An example of a useful function is the ConvertToMeters.ps1 script because it converts feet to
meters. There are no variables defined outside the function, and the function itself does not use the
Write-Host cmdlet to break up the pipeline. The results of the conversion will be returned directly to
the calling code. The only problem with the ConvertToMeters.psl script is that when it is dot-sourced
into the Windows PowerShell console, it runs and returns the data because all executable code in the
script is executed. The ConvertToMeters.psl script is shown here.

ConvertToMeters.ps1

Function Script:ConvertToMeters($feet)
{
"$feet feet equals $($feet*.31) meters"”
} #end ConvertToMeters
$feet = 5
ConvertToMeters -Feet $feet

With well-written functions, it is trivial to collect them into a single script—you just cut and paste.
When you are done, you have created a function library.

When pasting your functions into the function library script, pay attention to the comments at
the end of the function. The comments at the closing brace for each function not only point to the
end of the script block, they also provide a nice visual indicator for the end of each function. This

186 Windows PowerShell Step by Step, Third Edition

can be helpful when you need to troubleshoot a script. An example of such a function library is the
ConversionFunctions.psl script, which is shown here.

ConversionFunctions.psl

Function Script:ConvertToMeters($feet)

{
"$feet feet equals $($feet*.31) meters"
} #end ConvertToMeters

Function Script:ConvertToFeet($meters)

{
"$meters meters equals $($meters * 3.28) feet"
} #end ConvertToFeet

Function Script:ConvertToFahrenheit($celsius)

{
"$celsius celsius equals $((1.8 * $celsius) + 32) fahrenheit"
} #end ConvertToFahrenheit

Function Script:ConvertTocelsius($fahrenheit)

{
"$fahrenheit fahrenheit equals $((($fahrenheit - 32)/9)*5) celsius"
} #end ConvertTocelsius

Function Script:ConvertToMiles($kilometer)

{
"$kilometer kilometers equals $(($kilometer *.6211)) miles"
} #end convertToMiles

Function Script:ConvertToKilometers($miles)

{
"$miles miles equals $(($miles * 1.61)) kilometers"
} #end convertToKilometers

One way to use the functions from the ConversionFunctions.psl script is to use the dot-sourcing
operator to run the script so that the functions from the script are part of the calling scope. To dot-
source the script, you use the dot-source operator (the period, or dot symbol), followed by a space,
followed by the path to the script containing the functions you want to include in your current scope.
(Dot-sourcing is covered in more depth in the following section.) After you do this, you can call the
function directly, as shown here.

PS C:\> . C:\scripts\ConversionFunctions.psl
PS C:\> convertToMiles 6
6 kilometers equals 3.7266 miles

All of the functions from the dot-sourced script are available to the current session. This can be
demonstrated by creating a listing of the function drive, as shown here.

PS C:\> dir function: | Where { $_.name -Tike 'conv*'} |
Format-Table -Property name, definition -AutoSize

Name Definition

ConvertToMeters param($feet) "$feet feet equals $($feet*.31) meters"...

Working with functions 187

ConvertToFeet param($meters) "$meters meters equals $($meters * 3.28) feet"...
ConvertToFahrenheit param($celsius) "$celsius celsius equals $((1.8 * $celsius) + 32)
fahrenheit"...

ConvertTocelsius param($fahrenheit) "$fahrenheit fahrenheit equals $((($fahrenheit -
32)/9)*5) celsius...

ConvertToMiles param($kilometer) "$kilometer kilometers equals $(($kilometer *.6211))
miles"...

ConvertToKilometers param($miles) "$miles miles equals $(($miles * 1.61)) kilometers"...

Including functions in the Windows PowerShell environment

In Windows PowerShell 1.0, you could include functions from previously written scripts by dot-sourcing
the script. The use of a module, which was introduced in Windows PowerShell 2.0, offers greater
flexibility than dot-sourcing because you can create a module manifest, which specifies exactly which
functions and programming elements will be imported into the current session.

Using dot-sourcing

This technique of dot-sourcing still works in Windows PowerShell 5.0, and it offers the advantage of
simplicity and familiarity. In the TextFunctions.psl script shown following, two functions are created.
The first function is called New-Line, and the second is called Get-TextStats. The TextFunctions.psl
script is shown here.

TextFunctions.psl

Function New-Line([string]$stringIn)

n_n

* $stringIn.length
} #end New-Line

Function Get-TextStats([string[]]$textIn)
{

$textIn | Measure-Object -Line -word -char
} #end Get-TextStats

The New-Line function creates a string of hyphen characters as long as the length of the input text.
This is helpful when you want an underline that is sized to the text, for text separation purposes. An
example of using the New-Line text function in this manner is shown here.

CallNew-LineTextFunction.psl

Function New-Line([string]$stringIn)

{
"-" * $stringIn.length

} #end New-Line

Function Get-TextStats([string[]]$textIn)
{

$textIn | Measure-Object -Line -word -char
} #end Get-TextStats

*** Entry Point to script #**%*
"This is a string" | ForEach-Object {$_ ; New-Line $_}

188 Windows PowerShell Step by Step, Third Edition

When the script runs, it returns the following output.

This is a string

Of course, this is a bit inefficient and limits your ability to use the functions. If you have to copy
the entire text of a function into each new script you want to produce, or edit a script each time you
want to use a function in a different manner, you dramatically increase your workload. If the functions
were available all the time, you might be inclined to use them more often. To make the text functions
available in your current Windows PowerShell console, you need to dot-source the script containing
the functions into your console, put it in a module, or load it via your profile. You will need to use the
entire path to the script unless the folder that contains the script is in your search path. The syntax
to dot-source a script is so easy that it actually becomes a stumbling block for some people who are
expecting some complex formula or cmdlet with obscure parameters. It is none of that—just a period
(dot), followed by a space, followed by the path to the script that contains the function. This is why it
is called dot-sourcing: you have a dot and the source (path) to the functions you want to include. This
is shown here.

PS C:\> . C:\fso\TextFunctions.psl

After you have included the functions in your current console, all the functions in the source script
are added to the Function drive. This is shown in Figure 6-1.

5 select powershell - m} X

FIGURE 6-1 Functions from a dot-sourced script are available via the Function drive.

CHAPTER 6 Working with functions 189

Using dot-sourced functions

After the functions have been introduced to the current console, you can incorporate them into your
normal commands. This flexibility should also influence the way you write the function. If the functions
are written so they will accept pipelined input and do not change the system environment—by add-
ing global variables, for example—you will be much more likely to use the functions, and they will be
less likely to conflict with either functions or cmdlets that are present in the current console.

As an example of using the New-Line function, consider the fact that the Get-Ciminstance cmdlet
allows the use of an array of computer names for the -ComputerName parameter. In this example,
BIOS information is obtained from two separate workstations. This is shown here.

PS C:\> Get-CimInstance win32_bios -ComputerName dcl, c10

SMBIOSBIOSVersion : 090006

Manufacturer : American Megatrends Inc.

Name : BIOS Date: 05/23/12 17:15:53 Ver: 09.00.06
SerialNumber 1 5198-1332-9667-8393-5778-4501-39

Version : VRTUAL - 5001223

PSComputerName : cl0

SMBIOSBIOSVersion : Hyper-V UEFI Release v1.0

Manufacturer : Microsoft Corporation

Name : Hyper-V UEFI Release v1.0
SerialNumber 1 3601-6926-9922-0181-5225-8175-58
Version : VRTUAL - 1

PSComputerName 1 dcl

You can improve the display of the information returned by Get-CimInstance by pipelining the
output to the New-Line function so that you can underline each computer name as it comes across
the pipeline. You do not need to write a script to produce this kind of display. You can enter the com-
mand directly into the Windows PowerShell console. The first thing you need to do is to dot-source
the TextFunctions.psl script. This makes the functions directly available in the current Windows
PowerShell console session. You then use the same Get-CimInstance query you used earlier to obtain
BIOS information via WMI from two computers. Pipeline the resulting management objects to the
ForEach-Object cmdlet. Inside the script block section, you use the $_ automatic variable to refer-
ence the current object on the pipeline and retrieve the PSComputerName property. You send this
information to the New-Line function so the server name is underlined, and you display the BIOS
information that is contained in the $_ variable.

The command to import the New-Line function into the current Windows PowerShell session and
use it to underline the server names is shown here.
PS C:\> . C:\fso\TextFunctions.psl
PS C:\> Get-CimInstance win32_bios -ComputerName dcl, c10 | ForEach-Object { $_.PSComputerName

; New-Line $_.PSComputerName ; $_}

The results of using the New-Line function are shown in Figure 6-2.

190 Windows PowerShell Step by Step, Third Edition

B3 Select powershell — O X

FIGURE 6-2 Functions that are written to accept pipelined input find an immediate use in your daily work routine.

The Get-TextStats function from the TextFunctions.psl script provides statistics based upon an
input text file or text string. After the TextFunctions.psl script is dot-sourced into the current console,
the statistics it returns when the function is called are word count, number of lines in the file, and
number of characters. An example of using this function is shown here.

Get-TextStats "This is a string"
When the Get-TextStats function is used, the following output is produced.
Lines Words Characters Property

In this section, the use of functions was discussed. The reuse of functions could be as simple as
copying the text of the function from one script into another script. It is easier, however, to dot-source
the function than to reuse it. This can be done from within the Windows PowerShell console or from
within a script.

Adding help for functions

When you dot-source functions into the current Windows PowerShell console, one problem is intro-
duced. Because you are not required to open the file that contains the function to use it, you might be
unaware of everything the file contains within it. In addition to functions, the file could contain variables,
aliases, Windows PowerShell drives, or any number of other things. Depending on what you are actually
trying to accomplish, this might or might not be an issue. The need sometimes arises, however, to have
access to help information about the features provided by the Windows PowerShell script.

CHAPTER 6 Working with functions 191

Using a here-string object for help

In Windows PowerShell 1.0, you could solve this problem by adding a help parameter to the func-
tion and storing the help text within a here-string object. You can also use this approach in Windows
PowerShell 5.0, but as shown in Chapter 7, "Creating advanced functions and modules,” there is a
better approach to providing help for functions. The classic here-string approach for help is shown in
the GetWmiClassesFunction.psl script, which follows. The first step that needs to be done is to define a
switch parameter named $help. The second step involves creating and displaying the results of a here-
string object that includes help information. The GetWmiClassesFunction.psl script is shown here.

GetWmiClassesFunction.psl

Function Get-WmiClasses(
$class=($paramMissing=$true),
$ns="root\cimv2",
[switch]$help
)
{
If($help)
{
$helpstring = @"
NAME
Get-WmiClasses
SYNOPSIS
Displays a list of WMI Classes based upon a search criteria
SYNTAX
Get-WmiClasses [[-class] [string]] [[-ns] [string]l] [-help]
EXAMPLE
Get-WmiClasses -class disk -ns root\cimv2"
This command finds wmi classes that contain the word disk. The
classes returned are from the root\cimv2 namespace.
"a
$helpString
break #exits the function early
}
If($Tocal:paramMissing)
{
throw "USAGE: Get-WmiClasses -class <class type> -ns <wmi namespace>"
} #%$7ocal:paramMissing
"*nClasses in $ns namespace
Get-WmiObject -namespace $ns -Tist |
Where-Object {
$_.name -match $class -and °
$_.name -notlike 'cim*'

}

#
} #end get-wmiclasses

192 Windows PowerShell Step by Step, Third Edition

The here-string technique works pretty well for providing function help if you follow the cmdlet
help pattern. This is shown in Figure 6-3.

B powershell — [m] X

PS C:\> . C:\fso\GetWmiClassesFunction.psil ~
PS C:\> Get-WmiClasses -help
NAME
Get-WmiClasses
SYNOPSIS
Displays a list of WMI Classes based upon a search criteria
SYNTAX
Get-WmiClasses [[-class] [string]] [[-ns] [string]] [-help]
EXAMPLE
Get-WmiClasses -class disk -ns root\cimv2™
This command finds wmi classes that contain the word disk. The
classes returned are from the root\cimv2 namespace.
Ps C:\> o

FIGURE 6-3 Manually created help can mimic the look of core cmdlet help.

The drawback with manually creating help for a function is that it is tedious, and as a result, only
the most important functions receive help information when you use this methodology. This is unfor-
tunate, because it then requires the user to memorize the details of the function contract. One way
to work around this is to use the Get-Content cmdlet to retrieve the code that was used to create the
function. This is much easier than searching for the script that was used to create the function and
opening it up in Notepad. To use the Get-Content cmdlet to display the contents of a function, you
enter Get-Content and supply the path to the function. All functions available to the current Windows
PowerShell environment are available via the Function Windows PowerShell drive. You can therefore
use the following syntax to obtain the content of a function.

PS C:\> Get-Content Function:\Get-WmiClasses
The technique of using Get-Content to read the text of the function is shown in Figure 6-4.

An easier way to add help, by using comment-based help, is discussed in Chapter 7. Comment-based
help, although more complex than the method discussed here, offers a number of advantages—primarily
due to the integration with the Windows PowerShell help subsystem. When you add comment-based
help, users of your function can access your help in exactly the same manner as for any of the core
Windows PowerShell cmdlets.

Working with functions 193

B powershell — [m] X

FIGURE 6-4 The Get-Content cmdlet can retrieve the contents of a function.

Using two input parameters

To create a function that uses multiple input parameters, you use the Function keyword, specify the
name of the function, use a variable for each input parameter, and then define the script block within
the braces. The pattern is shown here.

Function My-Function($Inputl, $Input2)
{

#Insert Code Here

}

An example of a function that takes multiple parameters is the Get-FreeDiskSpace function, which
is shown in the Get-FreeDiskSpace.psl script at the end of this section.

The Get-FreeDiskSpace.psl script begins with the Function keyword and is followed by the name
of the function and the two input parameters. The input parameters are placed inside parentheses, as
shown here.

Function Get-FreeDiskSpace($drive, $computer)

Inside the function’s script block, the Get-FreeDiskSpace function uses the Get-WmiObject cmdlet
to query the Win32_LogicalDisk WMI class. It connects to the computer specified in the $computer
parameter, and it filters out only the drive that is specified in the $drive parameter. When the function

194 Windows PowerShell Step by Step, Third Edition

is called, each parameter is specified as -drive and -computer. In the function definition, the variables
$drive and $computer are used to hold the values supplied to the parameters.

After the data from WMI is retrieved, it is stored in the $driveData variable. The data that is stored

in the $driveData variable is an instance of the Win32_LogicalDisk class. This variable contains a

complete instance of the class. The members of this class are shown in Table 6-1.

TABLE 6-1 Members of the Win32_LogicalDisk class

Name

Chkdsk

Reset

SetPowerState

Access

Availability

BlockSize

Caption

Compressed
ConfigManagerErrorCode
ConfigManagerUserConfig
CreationClassName
Description

DevicelD

DriveType

ErrorCleared
ErrorDescription
ErrorMethodology
FileSystem

FreeSpace

InstallDate

LastErrorCode
MaximumComponentLength
MediaType

Name

NumberOfBlocks

PNPDevicelD

Member type
Method

Method
Method

Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property

Property

Definition

System.Management.ManagementBaseObject Chkdsk(System.
Boolean FixErrors, System.Boolean VigorousindexCheck, System.

Boolean SkipFolderCycle, System.Boolean ForceDismount, System.
Boolean RecoverBadSectors, System.Boolean OkToRunAtBootUp)

System.Management.ManagementBaseObject Reset()

System.Management.ManagementBaseObject

SetPowerState(System.UInt16 PowerState, System.String Time)

System.UInt16 Access {get;set;}

System.UInt16 Availability {get;set;}
System.UInt64 BlockSize {get set;}

System.String Caption {get;set;}

System.Boolean Compressed {get;set;}
System.UInt32 ConfigManagerErrorCode {get;set;}
System.Boolean ConfigManagerUserConfig {get;set;}
System.String CreationClassName {get set;}
System.String Description {get;set;}

System.String DevicelD {get;set;}

System.UInt32 DriveType {get set;}
System.Boolean ErrorCleared {get;set;}
System.String ErrorDescription {get;set;}
System.String ErrorMethodology {get;set;}
System.String FileSystem {get;set;}

System.UInt64 FreeSpace {get;set,}

System.String InstallDate {get;set;}

System.UInt32 LastErrorCode {get;set;}
System.UInt32 MaximumComponentLength {get;set;}
System.UInt32 MediaType {get;set;}

System.String Name {get;set;}

System.UInt64 NumberOfBlocks {get set;}

System.String PNPDevicelD {get;set;}

Working with functions

195

Name Member type Definition

PowerManagementCapabilities | Property System.UInt16[] PowerManagementCapabilities {get;set;}
PowerManagementSupported | Property System.Boolean PowerManagementSupported {get;set;}
ProviderName Property System.String ProviderName {get;set;}

Purpose Property System.String Purpose {get;set;}

QuotasDisabled Property System.Boolean QuotasDisabled {get;set;}
Quotasincomplete Property System.Boolean Quotasincomplete {get;set;}
QuotasRebuilding Property System.Boolean QuotasRebuilding {get;set;}

Size Property System.UInt64 Size {get;set;}

Status Property System.String Status {get;set;}

Statusinfo Property System.UInt16 Statusinfo {get;set;}
SupportsDiskQuotas Property System.Boolean SupportsDiskQuotas {get;set;}
SupportsFileBasedCompression | Property System.Boolean SupportsFileBasedCompression {get;set;}
SystemCreationClassName Property System.String SystemCreationClassName {get;set;}
SystemName Property System.String SystemName {get;set;}

VolumeDirty Property System.Boolean VolumeDirty {get;set;}
VolumeName Property System.String VolumeName {get set;}
VolumeSerialNumber Property System.String VolumeSerialNumber {get;set;}
__CLASS Property System.String __CLASS {get set;}

__DERIVATION Property System.String[] __DERIVATION {get;set;}
__DYNASTY Property System.String __DYNASTY {get set;}

__GENUS Property System.Int32 __GENUS {get;set;}

__NAMESPACE Property System.String __NAMESPACE {get;set;}

__PATH Property System.String __PATH {get;set;}

__PROPERTY_ COUNT Property System.Int32 __PROPERTY_COUNT {get;set;}
__RELPATH Property System.String __RELPATH {get;set;}

__SERVER Property System.String __SERVER {get;set;}

__SUPERCLASS Property System.String __SUPERCLASS {get;set;}

PSStatus Property set PSStatus {Status, Availability, DevicelD, Statusinfo}
ConvertFromDateTime Script method System.Object ConvertFromDateTime();
ConvertToDateTime Script method System.Object ConvertToDateTime();

When you have the data stored in the $driveData variable, you will want to print some information
to the user of the script. The first thing to do is print the name of the computer and the name of the
drive. To do this, you can place the variables inside double quotation marks. Double quotation marks

196 Windows PowerShell Step by Step, Third Edition

denote expanding strings, and variables placed inside double quotation marks emit their value, not
their name. This is shown here.

"$computer free disk space on drive $drive"

The next thing you will want to do is format the data that is returned. To do this, use the Microsoft
.NET Framework format strings to specify two decimal places. You will need to use a subexpression to
prevent the unraveling of the WMI object inside the expanding-string double quotation marks. The
subexpression uses the dollar sign and a pair of parentheses to force the evaluation of the expression
before returning the data to the string. This is shown here.

Get-FreeDiskSpace.psl

Function Get-FreeDiskSpace($drive, $computer)

{

$driveData = Get-WmiObject -class win32_LogicalDisk °
-computername $computer -filter “Name = 'S$drive'"

$computer free disk space on drive $drive
$("{0:n2}" -f ($driveData.FreeSpace/1IMB)) MegaBytes

}

Get-FreeDiskSpace -drive "C:" -computer "C10"

Obtaining specific WMI data

Though storing the complete instance of the object in the $driveData variable is a bit inefficient
due to the amount of data it contains, in reality the class is rather small, and the ease of using
the Get-WmiObject cmdlet is usually worth the wasteful methodology. If performance is a pri-
mary consideration, the use of the [wmi] type accelerator would be a better solution. To obtain
the free disk space by using this method, you would use the following syntax.

([wmi]"Win32_logicalDisk.DeviceID="c:'").FreeSpace

To put the preceding command into a usable function, you would need to substitute the
hard-coded drive letter for a variable. In addition, you would want to modify the class con-
structor to receive a path to a remote computer. The newly created function is contained in
the Get-DiskSpace.psl script, shown here.

Get-DiskSpace.psl

Function Get-DiskSpace($drive, $computer)

{
([wmi]l"\\$computer\root\cimv2:Win32_logicalDisk.DeviceID="'$drive'").FreeSpace

}

Get-DiskSpace -drive "C:" -computer "Office"

After you have made the preceding changes, the code only returns the value of the
FreeSpace property from the specific drive. If you were to send the output to Get-Member,
you would find that you have an integer. This technique is more efficient than storing an
entire instance of the Win32_LogicalDisk class and then selecting a single value.

Working with functions 197

Using a type constraint in a function

When you are accepting parameters for a function, it might be important to use a type constraint to
ensure that the function receives the correct type of data. To do this, you place the name of the type
you want inside brackets in front of the input parameter. This constrains the data type and prevents
the entry of an incorrect type of data. Frequently used type accelerators are shown in Table 6-2.

TABLE 6-2 Data type aliases

Alias Type

[int] 32-bit signed integer

[long] 64-bit signed integer

[string] Fixed-length string of Unicode characters
[char] Unicode 16-bit character

[bool] True/false value

[byte] 8-bit unsigned integer

[double] Double-precision 64-bit floating-point number
[decimal] 128-bit decimal value

[single] Single-precision 32-bit floating-point number
[array] Array of values

[xml] XML object

[hashtable] Hashtable object (similar to a dictionary object)

In the Resolve-ZipCode function, which is shown in the following Resolve-ZipCode.ps1 script, the
$zip input parameter is constrained to allow only a 32-bit signed integer for input. (Obviously, the [int]
type constraint would eliminate most of the world’s postal codes, but the web service the script uses
only resolves US-based postal codes, so it is a good addition to the function.)

In the Resolve-ZipCode function, the first thing that is done is to use a string that points to the
WSDL (Web Services Description Language) for the web service. Next, the New-WebServiceProxy
cmdlet is used to create a new web service proxy for the ZipCode service. The WSDL for the ZipCode
service defines a method called the GetInfoByZip method. It will accept a standard US-based postal
code. The results are displayed as a table. The Resolve-ZipCode.psl script is shown here.

Resolve-ZipCode.psl

#Requires -Version 5.0

Function Resolve-ZipCode([int]$zip)

{
$URI = "http://www.webservicex.net/uszip.asmx?WSDL"
$zipProxy = New-WebServiceProxy -uri $URI -namespace WebServiceProxy -class ZipClass
$zipProxy.getinfobyzip($zip).table

} #end Get-ZipCode

Resolve-ZipCode 28273

198 Windows PowerShell Step by Step, Third Edition

When you use a type constraint on an input parameter, any deviation from the expected data type
will generate an error similar to the one shown here.

Resolve-ZipCode : Cannot process argument transformation on parameter 'zip'. Cannot convert

value "COW" to type "System
.Int32". Error: "Input string was not in a correct format."
At C:\Users\ed\AppData\Local\Temp\tmp3351.tmp.psl:22 char:16
+ Resolve-ZipCode <<<< "COW"
+ CategoryInfo : InvalidData: (:) [Resolve-ZipCode],
ParameterBindin...mationException
+ FullyQualifiedErrorId : ParameterArgumentTransformationError,Resolve-ZipCode

Needless to say, such an error could be distracting to the users of the function. One way to handle the
problem of confusing error messages is to use the Trap keyword. In the DemoTrapSystemException.psl
script, the My-Test function uses [int] to constrain the $myinput variable to accept only a 32-bit unsigned
integer for input. If such an integer is received by the function when it is called, the function will return
the string It worked. If the function receives a string for input, an error will be raised, similar to the one
shown previously.

Rather than display a raw error message, which most users and many IT professionals find confusing,
it is a best practice to suppress the display of the error message, and perhaps inform the user that an
error condition has occurred and provide more meaningful and direct information that the user can
then relay to the help desk. Many times, IT departments will display such an error message, complete
with either a local telephone number for the appropriate help desk, or even a link to an internal
webpage that provides detailed troubleshooting and corrective steps the user can perform. You could
even provide a webpage that hosted a script that the user could run to fix the problem. This is similar
to the “Fix it for me” webpages Microsoft introduced.

When an instance of a System.SystemException class occurs (when a system exception occurs),
the Trap statement will trap the error, rather than allowing it to display the error information on the
screen. If you were to query the $error variable, you would find that the error had in fact occurred
and was actually received by the error record. You would also have access to the ErrorRecord class via
the $_ automatic variable, which means that the error record has been passed along the pipeline. This
gives you the ability to build a rich error-handling solution. In this example, the string error trapped
is displayed, and the Continue statement is used to continue the script execution on the next line of
code. In this example, the next line of code that is executed is the After the error string. When the
DemoTrapSystemException.psl script is run, the following output is shown.

error trapped
After the error

Working with functions 199

The complete DemoTrapSystemException.psl script is shown here.

DemoTrapSystemException.psl
Function My-Test([int]$myinput)
{

"It worked"
} #End my-test function
*** Entry Point to Script ***

Trap [SystemException] { "error trapped" ; continue }

My-Test -myinput "string"
"After the error"

Using more than two input parameters

When using more than two input parameters, | consider it a best practice to modify the way the function

is structured. This not only makes the function easier to read, it also permits cmdlet binding. In the basic
function pattern shown here, the function accepts three input parameters. When you consider the default
values and the type constraints, you can tell that the parameters begin to become long. Moving them to
the inside of the function body highlights the fact that they are input parameters, and it makes them easier
to read, understand, and maintain. It also allows for decorating the parameters with attributes.

Function Function-Name
{
Param(
[int]$Parameterl,
[String]$Parameter2 = "DefaultValue",
$Parameter3
)
#Function code goes here
} #end Function-Name

An example of a function that uses three input parameters is the Get-DirectoryListing function.
With the type constraints, default values, and parameter names, the function signature would be
rather cumbersome to include on a single line. This is shown here.

Function Get-DirectoryListing ([String]$Path, [String]$Extension = "txt", [Switch]$Today)

If the number of parameters were increased to four, or if a default value for the -Path parameter
was wanted, the signature would easily scroll to two lines. The use of the Param statement inside the
function body also provides the ability to specify input parameters to a function.

200 Windows PowerShell Step by Step, Third Edition

Note The use of the Param statement inside the function body is often regarded as a
personal preference. It requires additional work, and often leaves the reader of the script
wondering why this was done. When there are more than two parameters, visually the
Param statement stands out, and it is obvious why it was done in this particular manner.
But, as will be shown in Chapter 7, using the Param statement is the only way to gain
access to advanced function features such as cmdlet binding, parameter attributes, and
other powerful features of Windows PowerShell.

Following the Function keyword, the name of the function, and the opening script block, the
Param keyword is used to identify the parameters for the function. Each parameter must be separated
from the others by a comma. All the parameters must be surrounded with a set of parentheses. If you
want to assign a default value for a parameter, such as the extension .txt for the Extension parameter
in the Get-DirectoryListing function, you perform a straight value assignment followed by a comma.

In the Get-DirectorylListing function, the Today parameter is a switch parameter. When it is supplied
to the function, only files written to since midnight on the day the script is run will be displayed. If it is
not supplied, all files matching the extension in the folder will be displayed. The Get-DirectoryListing-
Today.ps1 script is shown here.

Get-DirectoryListingToday.psl

Function Get-DirectorylListing

{
Param(
[String]$Path,
[String]$Extension = "txt",
[Switch]$Today
)
If($Today)
{
Get-ChildItem -Path $path* -include *.$Extension
Where-Object { $_.LastWriteTime -ge (Get-Date).Date }
}
ELSE
{
Get-ChildItem -Path $path* -include *.$Extension
}

} #end Get-DirectorylListing

%% Entry to script *¥*
Get-DirectoryListing -p c:\fso -t

Working with functions 201

Note As a best practice, you should avoid creating functions that have a large number
of input parameters. It is very confusing. When you find yourself creating a large num-
ber of input parameters, you should ask if there is a better way to do things. It might be
an indicator that you do not have a single-purpose function. In the Get-Directorylisting
function, | have a switch parameter that will filter the files returned by the ones written
to today. If | were writing the script for production use, instead of just to demonstrate
multiple function parameters, | would have created another function called something
like Get-FilesByDate. In that function, | would have a Today switch, and a Date parameter
to allow a selectable date for the filter. This separates the data-gathering function from
the filter/presentation function. See the “Using functions to provide ease of modification”
section later in this chapter for more discussion of this technique.

Using functions to encapsulate business logic

There are two kinds of logic with which script writers need to be concerned. The first is program logic,
and the second is business logic. Program logic includes the way the script works, the order in which
things need to be done, and the requirements of code used in the script. An example of program
logic is the requirement to open a connection to a database before querying the database.

Business logic is something that is a requirement of the business, but not necessarily a requirement
of the program or script. The script can often operate just fine regardless of the particulars of the
business rule. If the script is designed properly, it should operate perfectly fine no matter what gets
supplied for the business rules.

In the BusinessLogicDemo.ps1 script, a function called Get-Discount is used to calculate the
discount to be granted to the total amount. One good thing about encapsulating the business rules
for the discount into a function is that as long as the contract between the function and the calling
code does not change, you can drop any kind of convoluted discount schedule that the business
decides to come up with into the script block of the Get-Discount function—including database
calls to determine on-hand inventory, time of day, day of week, total sales volume for the month,
the buyer's loyalty level, and the square root of some random number that is used to determine an
instant discount rate.

So, what is the contract with the function? The contract with the Get-Discount function says, “If
you give me a rate number as a type of system.double and a total as an integer, | will return to you a
number that represents the total discount to be applied to the sale.” As long as you adhere to that
contract, you never need to modify the code.

The Get-Discount function begins with the Function keyword and is followed by the name of the
function and the definition for two input parameters. The first input parameter is the $rate parameter,
which is constrained to be of type system.double (which will permit you to supply decimal numbers).
The second input parameter is the $total parameter, which is constrained to be of type system.integer,

202 Windows PowerShell Step by Step, Third Edition

and therefore will not allow decimal numbers. In the script block, the value of the -total parameter is
multiplied by the value of the -rate parameter. The result of this calculation is returned to the pipeline.

The Get-Discount function is shown here.

Function Get-Discount([double]$rate,[int]$total)

{
$rate * $total
} #end Get-Discount

The entry point to the script assigns values to both the $total and $rate variables, as shown here.

$rate = .05
$total = 100

The variable $discount is used to hold the result of the calculation from the Get-Discount function.
When calling the function, it is a best practice to use the full parameter names. It makes the code
easier to read and will help make it immune to unintended problems if the function signature ever
changes.

$discount = Get-Discount -rate $rate -total $total

Note The signature of a function consists of the order and names of the input parameters.
If you typically supply values to the signature via positional parameters, and the order of
the input parameters changes, the code will fail, or worse yet, produce inconsistent results.
If you typically call functions via partial parameter names, and an additional parameter is
added, the script will fail due to difficulty with the disambiguation process. Obviously, you
take this into account when first writing the script and the function, but months or years
later, when you are making modifications to the script or calling the function via another
script, the problem can arise.

The remainder of the script produces output for the screen. The results of running the script are
shown here.

Total: 100
Discount: 5
Your Total: 95

The complete text of the BusinessLogicDemo.psl script is shown here.

BusinessLogicDemo.ps1

Function Get-Discount([double]$rate, [int]$total)
{

$rate * $total

} #end Get-Discount

$rate = .05
$total = 100

Working with functions 203

$discount = Get-Discount -rate $rate -total $total
"Total: $total”

"Discount: $discount"

"Your Total: $($total-$discount)"”

Business logic does not have to be related to business purposes. Business logic is anything that is
arbitrary that does not affect the running of the code. In the FindLargeDocs.ps1 script, there are two
functions. The first function, Get-Doc, is used to find document files (files with an extension of .doc,
.docx, or .dot) in a folder that is passed to the function when it is called. The -Recurse switch param-
eter, when used with the Get-Childltem cmdlet, causes the function to look in the present folder, and
within child folders. This function is a stand-alone function and has no dependency on any other
functions.

The LargeFiles piece of code is a filter. A filter is a kind of special-purpose function that uses the Filter
keyword rather than the Function keyword when it is created. (For more information on filters, see the
“Understanding filters” section later in this chapter.) The FindLargeDocs.ps1 script is shown here.

FindLargeDocs.psl

Function Get-Doc($path)

{
Get-ChildItem -Path $path -include *.doc,*.docx,*.dot -recurse
} #end Get-Doc

Filter LargeFiles($size)
{

$_ |

Where-Object { $_.length -ge $size }
} #end LargeFiles

Get-Doc("C:\FSO") | LargeFiles 1000

Using functions to provide ease of modification

It is a truism that a script is never completed. There is always something else to add to a script—a
change that will improve it, or additional functionality that someone requests. When a script is written
as one long piece of inline code, without recourse to functions, it can be rather tedious and error-
prone to modify.

An example of an inline script is the InLineGetIPDemo.psl script. The first line of code uses the
Get-WmiObject cmdlet to retrieve the instances of the Win32_NetworkAdapterConfiguration WMI
class that IP enabled. The results of this WMI query are stored in the $/P variable. This line of code
is shown here.

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"

When the WMI information has been obtained and stored, the remainder of the script prints infor-
mation to the screen. The IPAddress, IPSubNet, and DNSServerSearchOrder properties are all stored
in an array. For this example, you are only interested in the first IP address, and you therefore print

204 Windows PowerShell Step by Step, Third Edition

element O, which will always exist if the network adapter has an IP address. This section of the script
is shown here.

"IP Address: " + $IP.IPAddress[0]

"Subnet: " + $IP.IPSubNet[0]

"GateWay: " + $IP.DefaultIPGateway

"DNS Server: " + $IP.DNSServerSearchOrder([0]
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain

When the script is run, it produces output similar to the following.

IP Address: 192.168.2.5
Subnet: 255.255.255.0
GateWay: 192.168.2.1

DNS Server: 192.168.2.1

FQDN: w8clientl.nwtraders.com

The complete InLineGetIPDemo.psl script is shown here.

InLineGetIPDemo.psl

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
"IP Address: " + $IP.IPAddress[0]

"Subnet: " + $IP.IPSubNet[0]

"GateWay: " + $IP.DefaultIPGateway

"DNS Server: " + $IP.DNSServerSearchOrder([0]

"FQDN: “ + $IP.DNSHostName + "." + $IP.DNSDomain

With just a few modifications to the script, a great deal of flexibility can be obtained. The modifica-
tions, of course, involve moving the inline code into functions. As a best practice, a function should be
narrowly defined and should encapsulate a single thought. Though it would be possible to move the
entire previous script into a function, you would not have as much flexibility. There are two thoughts
or ideas that are expressed in the script. The first is obtaining the IP information from WMI, and the
second is formatting and displaying the IP information. It would be best to separate the gathering
and the displaying processes from one another, because they are logically two different activities.

To convert the InLineGetIPDemo.psl script into a script that uses a function, you only need to add
the Function keyword, give the function a name, and surround the original code with a pair of braces.
The transformed script is now named GetIPDemoSingleFunction.psl and is shown here.

GetIPDemoSingleFunction.psl

Function Get-IPDemo

{

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
"IP Address: " + $IP.IPAddress[0]

"Subnet: " + $IP.IPSubNet[0]

"GateWay: " + $IP.DefaultIPGateway

"DNS Server: " + $IP.DNSServerSearchOrder[0]

"FQDN: “ + $IP.DNSHostName + "." + $IP.DNSDomain

} #end Get-IPDemo

*** Entry Point To Script #**%*
Get-IPDemo

Working with functions 205

If you go to all the trouble to transform the inline code into a function, what benefit do you derive?
By making this single change, your code will become

m Easier to read

m Easier to understand
m Easier to reuse

m Easier to troubleshoot

The script is easier to read because you do not really need to read each line of code to understand
what it does. You can tell that there is a function that obtains the IP address, and it is called from
outside the function. That is all the script does.

The script is easier to understand because you can tell there is a function that obtains the IP ad-
dress. If you want to know the details of that operation, you read that function. If you are not inter-
ested in the details, you can skip that portion of the code.

The script is easier to reuse because you can dot-source the script, as shown here. When the script
is dot-sourced, all the executable code in the script is run.

As a result, because each of the scripts prints information, the following is displayed.

IP Address: 192.168.2.5
Subnet: 255.255.255.0
GateWay: 192.168.2.1
DNS Server: 192.168.2.1
FQDN: C10.nwtraders.com

C10 free disk space on drive C:
48,767.16 MegaBytes

This 0S 1is version 10.0

The DotSourceScripts.psl script is shown following. As you can tell, it provides you with a certain
level of flexibility to choose the information required, and it also makes it easy to mix and match the
required information. If each of the scripts had been written in a more standard fashion, and the output
had been more standardized, the results would have been more impressive. As it is, three lines of code
produce an exceptional amount of useful output that could be acceptable in a variety of situations.

DotSourceScripts.psl

. C:\Scripts\GetIPDemoSingleFunction.psl
. C:\Scripts\Get-FreeDiskSpace.psl
. C:\Scripts\Get-OperatingSystemVersion.psl

A better way to work with the function is to think about the things the function is actually doing. In
the FunctionGetIPDemo.psl script, there are two functions. The first connects to WMI, which returns
a management object. The second function formats the output. These are two completely unrelated

206 Windows PowerShell Step by Step, Third Edition

tasks. The first task is data gathering, and the second task is the presentation of the information. The
FunctionGetIPDemo.ps1 script is shown here.

FunctionGetIPDemo.psl

Function Get-IPObject
{

Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
} #end Get-IPObject

Function Format-IPOutput($IP)
{

"IP Address: " + $IP.IPAddress[0]

"Subnet: " + $IP.IPSubNet[0]

"GateWay: " + $IP.DefaultIPGateway

"DNS Server: " + $IP.DNSServerSearchOrder[0]
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Format-IPOutput

*** Entry Point To Script

$ip = Get-IPObject
Format-IPOutput -ip $ip

By separating the data-gathering and the presentation activities into different functions, you
gain additional flexibility. You could easily modify the Get-/PObject function to look for network
adapters that were not IP enabled. To do this, you would need to modify the -Filter parameter
of the Get-WmiObject cmdlet. Because most of the time you would actually be interested only
in network adapters that are IP enabled, it would make sense to set the default value of the
input parameter to $true. By default, the behavior of the revised function is exactly as it was prior
to modification. The advantage is that you can now use the function and modify the objects
returned by it. To do this, you supply $false when calling the function. This is illustrated in the
Get-IPObjectDefaultEnabled.psl script.

Get-IPObjectDefaultEnabled.ps1

Function Get-IPObject([bool]$IPEnabled = $true)

{
Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Get-IPObject -IPEnabled $False

By separating the gathering of the information from the presentation of the information, you gain
flexibility not only in the type of information that is garnered, but also in the way the information
is displayed. When you are gathering network adapter configuration information from a network
adapter that is not enabled for IP, the results are not as impressive as for one that is enabled for IP.
You might therefore decide to create a different display to list only the pertinent information. Because
the function that displays the information is different from the one that gathers the information, a
change can easily be made to customize the information that is most germane. The Begin section
of the function is run once during the execution of the function. This is the perfect place to create a
header for the output data. The Process section executes once for each item on the pipeline, which in

Working with functions 207

this example will be each of the non-IP-enabled network adapters. The Write-Host cmdlet is used to
easily write the data out to the Windows PowerShell console. The backtick-t character combination
('t) is used to produce a tab.

Note The 't character is a string character, and as such it works with cmdlets that accept
string input.

The Get-IPObjectDefaultEnabledFormatNonIPOutput.psl script is shown here.

Get-IPObjectDefaultEnabledFormatNonIPOutput.psl

Function Get-IPObject([booT]$IPEnabled = $true)

{
Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"

} #end Get-IPObject

Function Format-NonIPOutput($IP)
{
Begin { "Index # Description” }
Process {
ForEach ($i in $ip)
{
Write-Host $i.Index 't $i.Description
} #end ForEach
} #end Process
} #end Format-NonIPOutPut

$ip = Get-IPObject -IPEnabled $False
Format-NonIPOutput($ip)

You can use the Get-IPObject function to retrieve the network adapter configuration, and you can
use the Format-NonlPOutput and Format-IPOutput functions in a script to display the IP information as
specifically formatted output, as shown in the CombinationFormatGetIPDemo.ps1 script shown here.

CombinationFormatGetIPDemo.psl

Function Get-IPObject([bool]$IPEnabled = $true)

{

Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Function Format-IPOutput($IP)

{

"IP Address: " + $IP.IPAddress[0]

"Subnet: " + $IP.IPSubNet[0]

"GateWay: " + $IP.DefaultIPGateway

"DNS Server: " + $IP.DNSServerSearchOrder[0]
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Format-IPOutput

Function Format-NonIPOutput($IP)

{

Begin { "Index # Description" }

208 Windows PowerShell Step by Step, Third Edition

Process {

ForEach ($i in $ip)

{

Write-Host $i.Index "t $i.Description

} #end ForEach

} #end Process
} #end Format-NonIPOutPut
**%*% Entry Point #*¥*%*
$IPEnabled = $false
$ip = Get-IPObject -IPEnabled $IPEnabled
If($IPEnabled) { Format-IPOutput($ip) }
ELSE { Format-NonIPOutput($ip) }

Understanding filters

A filter is a special-purpose function. It is used to operate on each object in a pipeline and is often
used to reduce the number of objects that are passed along the pipeline. Typically, a filter does not
use the Begin or the End parameters that a function might need to use. So a filter is often thought of
as a function that only has a Process block. Many functions are written without using the Begin or End
parameters, but filters are never written in such a way that they use the Begin or the End parameters. The
biggest difference between a function and a filter is a bit subtler, however. When a function is used
inside a pipeling, it actually halts the processing of the pipeline until the first element in the pipeline
has run to completion. The function then accepts the input from the first element in the pipeline and
begins its processing. When the processing in the function is completed, it then passes the results
along to the next element in the script block. A function runs once for the pipelined data. A filter, on
the other hand, runs once for each piece of data passed over the pipeline. In short, a filter will stream
the data when in a pipeline, and a function will not. This can make a big difference in the performance.
To illustrate this point, let's examine a function and a filter that accomplish the same things.

In the MeasureAddOneFilter.psl script, which follows, an array of 50,000 elements is created by
using the 1..50000 syntax. (In Windows PowerShell 1.0, 50,000 was the maximum size of an array
created in this manner. In Windows PowerShell 5.0, this ceiling has a maximum size of an [Int32]
(2,146,483,647). The use of this size is dependent upon memory. This is shown here.

PS C:\> 1..[Int32]::MaxValue

Array dimensions exceeded supported range.
At line:1 char:1

+ 1..[Int32]::MaxValue

+

+ CategoryInfo : OperationStopped: (:) [], OutOfMemoryException
+ FullyQualifiedErrorId : System.OutOfMemoryException

The array is then pipelined into the AddOne filter. The filter prints out the string add one filter and
then adds the number 1 to the current number on the pipeline. The length of time it takes to run the
command is then displayed. On my computer, it takes about 2.6 seconds to run the MeasureAddOne-
Filter.ps1 script.

Working with functions 209

MeasureAddOneFilter.ps1

Filter AddOne

{

"add one filter"
$_+1

}

Measure-Command { 1..50000 | addOne }

The function version is shown following. In a similar fashion to the MeasureAddOneFilter.psl
script, it creates an array of 50,000 numbers and pipelines the results to the AddOne function. The
string Add One Function is displayed. An automatic variable is created when pipelining input to
a function. It is called $input. The $input variable is an enumerator, not just a plain array. It has a
moveNext method, which can be used to move to the next item in the collection. Because $input is
not a plain array, you cannot index directly into it—3$input[0] would fail. To retrieve a specific ele-
ment, you use the $input.current property. When | run the following script, it takes 4.3 seconds on
my computer (that is almost twice as long as the filter).

MeasureAddOneFunction.psl

Function AddOne

{
"Add One Function"
While ($input.moveNext())
{

$input.current + 1
}
}

Measure-Command { 1..50000 | addOne }

What was happening that made the filter so much faster than the function in this example? The
filter runs once for each item on the pipeline. This is shown here.

add one filter
2
add one filter
3
add one filter
4
add one filter
5
add one filter
6

The DemoAddOneFilter.psl script is shown here.

DemoAddOneFilter.psl

Filter AddOne
{

"add one filter"
$_+1
}

1..5 | addOne

210 Windows PowerShell Step by Step, Third Edition

The AddOne function runs to completion once for all the items in the pipeline. This effectively stops
the processing in the middle of the pipeline until all the elements of the array are created. Then all the
data is passed to the function via the $input variable at one time. This type of approach does not take
advantage of the streaming nature of the pipeline, which in many instances is more memory-efficient.

Add One Function

o v A WN

The DemoAddOneFunction.psl script is shown here.

DemoAddOneFunction.psl

Function AddOne

{
"Add One Function”
While ($input.moveNext())
{

$input.current + 1
}
}

1..5 | addOne

To close this performance issue between functions and filters when used in a pipeline, you can write
your function so that it behaves like a filter. To do this, you must explicitly call out the Process block.
When you use the Process block, you are also able to use the $_ automatic variable instead of being
restricted to using $input. When you do this, the script will look like DemoAddOneR2Function.psl, the
results of which are shown here.

add one function r2
2
add one function r2
3
add one function r2
4
add one function r2
5
add one function r2
6

The complete DemoAddOneR2Function.psl script is shown here.

DemoAddOneR2Function.psl

Function AddOneR2
{
Process {
"add one function r2"
$_+1
}
} #end AddOneR2

1..5 | addOneR2

Working with functions 211

What does using an explicit Process block do to the performance? When run on my computer, the
function takes about 2.6 seconds, which is virtually the same amount of time taken by the filter. The
MeasureAddOneR2Function.psl script is shown here.

MeasureAddOneR2Function.psl

Function AddOneR2
{
Process {
"add one function r2"
$_+1
}
} #end AddOneR2

Measure-Command {1..50000 | addOneR2 }

Another reason for using filters is that they visually stand out, and therefore improve readability of
the script. The typical pattern for a filter is shown here.

Filter FilterName

{

#insert code here

}

The HasMessage filter, found in the FilterHasMessage.psl script, begins with the Filter keyword,
and is followed by the name of the filter, which is HasMessage. Inside the script block (the braces), the
$_ automatic variable is used to provide access to the pipeline. It is sent to the Where-Object cmdlet,
which performs the filter. In the calling script, the results of the HasMessage filter are sent to the
Measure-Object cmdlet, which tells the user how many events in the application log have a message
attached to them. The FilterHasMessage.ps1 script is shown here.

FilterHasMessage.ps1

Filter HasMessage

{

$_ |

Where-Object { $_.message }
} #end HasMessage

Get-WinEvent -LogName Application | HasMessage | Measure-Object

Although the filter has an implicit Process block, this does not prevent you from using the Begin,
Process, and End script blocks explicitly. In the FilterToday.psl script, a filter named IsToday is created. To
make the filter a stand-alone entity with no external dependencies required (such as the passing of a
DateTime object to it), you need the filter to obtain the current date. However, if the call to the Get-Date
cmdlet was done inside the Process block, the filter would continue to work, but the call to Get-Date
would be made once for each object found in the input folder. So, if there were 25 items in the folder,
the Get-Date cmdlet would be called 25 times. When you have something that you want to occur only
once in the processing of the filter, you can place it in a Begin block. The Begin block is called only once,
whereas the Process block is called once for each item in the pipeline. If you wanted any post-processing
to take place (such as printing a message stating how many files were found today), you would place the
relevant code in the End block of the filter.

212 Windows PowerShell Step by Step, Third Edition

The FilterToday.psl script is shown here.

FilterToday.psl

Filter IsToday
{
Begin {$dte = (Get-Date).Date}
Process { $_ |
Where-Object { $_.LastWriteTime -ge $dte }
}
}

Get-ChildItem -Path C:\fso | IsToday

Creating a function: Step-by-step exercises

In this exercise, you'll explore the use of the Get-Verb cmdlet to find permissible Windows PowerShell
verbs. You will also use Function keyword and create a function. After you have created the basic
function, you'll add additional functionality to the function in the next exercise.

Creating a basic function

1. Start the Windows PowerShell ISE.
2. Use the Get-Verb cmdlet to obtain a listing of approved verbs.

3. Select a verb that would be appropriate for a function that obtains a listing of files by date last
modified. In this case, the appropriate verb is Get.

4. Create a new function named Get-FilesByDate. The code to do this is shown here.

Function Get-FilesByDate
{

}

5. Add four command-line parameters to the function. The first parameter is an array of file
types, the second is for the month, the third parameter is for the year, and the last parameter
is an array of file paths. This portion of the function is shown here.

Param(
[string[]]$fileTypes,
[int]$month,
[int]$year,
[string[]1]1$path)

6. Following the Param portion of the function, add the code to perform a recursive search of
paths supplied via the $path variable. Limit the search to include only file types supplied via
the $filetypes variable. This portion of the code is shown here.

Get-ChildItem -Path $path -Include $filetypes -Recurse |

Working with functions 213

7. Add a Where-Object clause to limit the files returned to the month of the lastwritetime property
that equals the month supplied via the command line, and the year supplied via the command
line. This portion of the function is shown here.

Where-Object {
$_.lastwritetime.month -eq $month -AND $_.lastwritetime.year -eq $year }

8. Save the function in a .psl file named Get-FilesByDate.ps1.
9. Run the script containing the function inside the Windows PowerShell ISE.

10. In the command pane, call the function and supply appropriate parameters for the function.
One such example of a command line is shown here.

Get-FilesByDate -fileTypes *.docx -month 5 -year 2012 -path c:\data
The completed function is shown here.

Function Get-FilesByDate
{
Param(
[string[]]$fileTypes,
[int]$month,
[int]$year,
[string[]1]1$path)
Get-ChildItem -Path $path -Include $filetypes -Recurse |
Where-Object {
$_.lastwritetime.month -eq $month -AND $_.lastwritetime.year -eq $year }
} #end function Get-FilesByDate

This concludes this step-by-step exercise.

In the following exercise, you will add additional functionality to your Windows PowerShell function.
In this additional functionality you will include a default value for the file types and make the $month,
$year, and $path parameters mandatory.

Adding additional functionality to an existing function

1. Start the Windows PowerShell ISE.

2. Open the Get-FilesByDate.psl script (created in the previous exercise) and use the Save As feature
of the Windows PowerShell ISE to save the file with a new name of Get-FilesByDateV2.ps1.

3. Create an array of default file types for the $filetypes input variable. Assign the array of file
types to the $filetypes input variable. Use array notation when creating the array of file types.
For this exercise, use *.doc and *.docx. The command to do this is shown here.

[string[]]1$fileTypes = @(".doc","*.docx"),

214 Windows PowerShell Step by Step, Third Edition

4.

Use the [Parameter(Mandatory=3$true)] parameter tag to make the $month parameter manda-
tory. The tag appears just above the input parameter in the param portion of the script. Do
the same thing for the $year and $path parameters. The revised portion of the param section
of the script is shown here.

[Parameter (Mandatory=$true)]
[int]$month,
[Parameter(Mandatory=$true)]
[int]$year,

[Parameter (Mandatory=$true)]
[string[]1]1$path)

Save and run the function. Call the function without assigning a value for the path. An input
box should appear prompting you to enter a path. Enter a single path residing on your system,
and press Enter. A second prompt appears (because the $path parameter accepts an array).
Simply press Enter a second time. An appropriate command line is shown here.

Get-FilesByDate -month 10 -year 2011
Now run the function and assign a path value. An appropriate command line is shown here.
Get-FilesByDate -month 10 -year 2011 -path c:\data

Now run the function and look for a different file type. In the example shown here, | look for
Microsoft Excel documents.

Get-FilesByDate -month 10 -year 2011 -path c:\data -fileTypes *.x1Isx,*.xls
The revised function is shown here.

Function Get-FilesByDate
{
Param(
[string[]]1$fileTypes = @(".DOC”,"*.DOCX"),
[Parameter (Mandatory=$true)]
[int]$month,
[Parameter(Mandatory=$true)]
[int]$year,
[Parameter(Mandatory=$true)]
[string[]1]$path)
Get-ChildItem -Path $path -Include $filetypes -Recurse |
Where-0Object {
$_.lastwritetime.month -eq $month -AND $_.lastwritetime.year -eq $year }
} #end function Get-FilesByDate

This concludes the exercise.

Working with functions 215

Chapter 6 quick reference

To
Create a function
Reuse a Windows PowerShell function

Constrain a data type

Provide input to a function
To use a function
To store a function

To name a function

Do this
Use the Function keyword, and provide a name and a script block.
Dot-source the file containing the function.

Use a type constraint in brackets and place it in front of the variable or
data to be constrained.

Use the Param keyword and supply variables to hold the input.
Load the function into memory.
Place the function in a script file.

Use Get-Verb to identify an appropriate verb, and use the verb-noun
naming convention.

216 Windows PowerShell Step by Step, Third Edition

Index

Symbols

\040 escape sequence 600

$$ variable 148

$~ variable 148

$_variable 75, 148

$? variable 148

? alias 111

* (asterisk) wildcard character 69
" (backtick) character 144

= (equal sign) operator 168

! (exclamatio-n point) 80

> (greater-than) operator 327
< (less-than) operator 327

. (period) character 601

| (pipe) character 24, 144, 319

? (question mark) character 377

A

\a escape sequence 599
abstract classes, querying 299
abstract WMI class 382
access control list (ACL) 359
AccountsWithNoRequiredPassword.psl 139
ACL 369
-Action parameter 498
Active Directory
See also ADSI (Active Directory Service
Interfaces)
binding 400
committing changes 401, 429
creating objects 395, 396
installing RSAT 432
modifying user properties 410
overwriting fields 429
user account control values 408, 409

Active Directory Domain Services (AD DS)

See AD DS (Active Directory Domain Services)
Active Directory Management Gateway Service

(ADMGS) 431
Active Directory module
deploying forests 459-465
importing 433, 434
installing 431-433
loading automatically 434
remote sessions 434
verifying presence of 433
Active Directory Service Interfaces

(ADSI) See ADSI (Active Directory Service

Interfaces)

Active Directory sites, renaming 442, 443, 457

activities, workflow 552
AD DS (Active Directory Domain Services)
adding features 460, 472
assigning IP addresses 460, 472
changing passwords 456
creating computer accounts 443
creating users 446, 447
deploying 459
deployment tools 460
installing tools 397, 398
prerequisites 459
renaming computers 460
renaming sites 442, 443, 457
restarting computers 461, 472
setting passwords 457
unlocking accounts 457
verifying roles and features 462, 472
AD DS and AD LDS Tools 397, 398
Add-ADFeatures.psl 463

603

AddAdPreregs.psl

604

AddAdPrereqgs.psl 461
Add-Computer cmdlet 110
addfeature job 463
Add-History cmdlet 554
AddOne function 211
Add-PSSnapin cmdlet 554
Add-RegistryValue function 480
address pages, creating 412-414
AddTwoError.psl 490, 491

Add-WindowsFeature cmndlet 397, 398, 431,

432, 460, 468, 472
ADMGS (Active Directory Management
Gateway Service) 431
[ADSI] accelerator 396
ADSI (Active Directory Service Interfaces)
See also Active Directory
ADSI Edit 397, 398
AdsPath 396
attribute types 396
binding 400-405
connecting to objects 400-405
connecting to Windows NT 397
creating computer accounts 407, 408
creating groups 406, 407
creating objects 395, 396
creating users 405
deleting users 422
providers 397-399
ADSI Edit 397, 398
AdsPath 396
alias object, exposing properties 69
alias provider 66-67, 69
aliases
See also commands
avoiding in scripts 592
best practices 593
canonical 592
case sensitivity 81
compatibility 592
creating 69, 593
creating for Get-Help 18, 19
creating new 69
data types 152, 153, 198
definition 18
finding 37, 45
listing all 59, 67, 107

types of 592
user-defined 592
using description property in 593
using to retrieve syntaxes 43
working with 66
-AllowPasswordReplicationAccountName
parameter 468
All Users, All Hosts profile 283
altering system state using the Whatlf
parameter 74
Archive resource provider 565, 570
$args variable 219
arguments
detecting extra in functions 221
eliminating 326
limiting returned data set 326
passing multiple to functions 220
[array] alias 198
array objects 55
arrays
creating for computer names 133
evaluating 173
indexing 238
turning text files into 429
using -contains operator to examine
contents 517-519
ASClI values 159
$ASClI variable 329
-AsJob parameter 355, 356, 358, 360
assignment operators 169, 170
association classes 381, 385
-AutoSize parameter 335, 393

\b escape sequence 599

BadScript.psl 484, 502

basename script property 238

basicFunctions.psml 247

binary byte array security descriptor
(binary SD) 369

binding 400

binding string 400

BIOS information, retrieving from remote
systems 118, 121

[bool] alias 198

Boolean values 546
boundary-checking functions 536-538
braces, delimiting script blocks 185, 186
Break statement 166, 167
breakpoints
See also debugging
access modes 495
currently enabled 503
debugging commands 501
deleting 496, 504, 505, 509
disabling 504
enabling 504
listing 503, 504, 509
pipelining results 503
responding to 501, 502
setting 492
setting on commands 499-501, 509
setting on first line 492
setting on line numbers 492-494, 509
setting on read operations 496
setting on variables 495-499, 509
tracking status of 504
browsing classes 312
business logic 202-204
-bypass parameter 143
[byte] alias 198

C

C attribute 400
Calculator 51
calling instance methods 365
canonical aliases 592
case sensitivity
aliases 81
file names 85
variables 84
Catch block 538, 539
\cC escape sequence 600
-ccontains operator 517
certificate provider
and the file system model 69
and Windows 10 66
capabilities 69
identifying expired certificates 75

-CimSession parameter

listing certificates 69
searching expiring certificates 75
searching for certificates 74
using MMC 69
certificates
expired 75
searching for specific 74
viewing properties 72
Certificates Microsoft Management Console
(MMCQC) 69
changing registry property values 97
[char] alias 198
[character_group] character pattern 601
[~character_group] character pattern 601
character patterns in regular expressions 601
Check-AllowedValue function 536
checkpoints
adding to workflows 556, 562
configuring 556
creating 552
disabling 558
placing 556
setting at activity levels 558
CheckPoint-Workflow cmdlet 563
CheckPoint-Workflow workflow activity
552, 558
child scope 184
ChoiceDescription class 514
CIM class qualifiers 380
CIM cmdlets 363
See also CIM (Common Information
Model) 375
combining parameters 381
default WMI namespace 375
and tab expansion 375
CIM (Common Information Model)
See also CIM cmdlets
checking configurations 571, 572
namespaces 375
sessions, creating 348
querying WMI classes 346-348
CimClassMethods property 378
CimClassName property 378
CimClassQualifiers property 380
-CimSession parameter 347

605

classes

606

classes
abstract, querying 299
browsing 312
common 298
core 298
direct querying 299
displaying 302
dynamic 298-300
finding 298
identifying which to use 299
information about 312
listing 298
properties, retrieving 312
querying 299, 346-348
referencing 302
searching for 298
types of 298
-ClassName parameter 293, 297, 353, 381,
383, 394
cleaning up output 384
Clear-EventLog cmdlet 110
Clear-History cmdlet 554
Clear-Host cmdlet 60
clear method 13
Clear-Variable cmdlet 554
ClientLoadableCLSID property 526
client operating systems, managing 341
CLSID property 526, 528
CMD (command) shell 76
CMD interpreter 2,76
CMD prompt, running inside Windows
PowerShell console 76

cmdlet binding, enabling for functions 218
[cmdletbinding] attribute 217-225, 257, 476

cmdlets
See also commands
adding logic to workflows 549
aliases 18
common parameters 11, 12
confirming execution 7, 8
debugging 492
default parameter sets 224
disallowed from workflows 554
finding 36
finding properties of 37
getting help 12, 21

impersonating users 113

information about 3

naming 3, 54-57

non-automatic activities 554

prototype mode 7

remoting 109-111

retrieving syntax of 43

returning methods for 48

returning objects 44

selecting from a list 52

sorting 46

spelling out names 592

standard verbs 3

suspending 8, 9

tab completion 24

verb-noun naming convention 54

workflow activities 553
CN attribute 400
code

See also scripts

downloading samples xxii

formatting 594-597

wrapping to next line 324
collections, looping through 167, 177
color of fonts, changing 333
columns 32, 36
-Columns parameter 28
COM-based objects 61, 62
CombinationFormatGetIPDemo.psl 208
-Command argument 11
command lines, wrapping 350
-Command parameter 499
commandline property 350
command-line utilities 4-6, 19, 20, 22
commands

See also aliases; cmdlets

building in Windows PowerShell ISE 260

copying to Clipboard 53

creating in Windows PowerShell ISE 274

editing in Windows PowerShell ISE 262

executing in parallel 549

finding 36-44, 53, 262

getting details of 36-44

listing history of used 338, 339

moving the insertion point 62

recursive 294

retrieving 336
running as different user 113
running as jobs 135
running from script pane 263
running from session history 339
running ipconfig 4, 5
running multiple 5
running on remote systems 135
running sequentially 559
running single 120-122
running via Commands add-on 262
setting breakpoints on 499-501, 509
Commands add-on 260, 264, 270-272
comments 593, 594
common classes 298
Common Information Model (CIM)
cmdlets See CIM cmdlets
-ComObject parameter 50, 51
comparison operators 169, 170
compatibility aliases 592
Complete-Transaction cmdlet 554
computer accounts, creating with ADSI
407, 408
computer connectivity 516, 546
computer names, creating an array of 133
-computer parameter 195
$computer variable 195
-ComputerName parameter 111, 112, 301, 347,
512, 546
computers, checking for valid WMI class 533
concatenation operators 145
Concurrency property 526
-ConfigurationData parameter 568
configuration drift 571, 572
Configuration keyword 566, 580
ConfigurationNamingContext property 442
configurations
calling 569, 574
checking 571
controlling drift 571, 572
creating DSC scripts 580
creating using DSC 566-568
parameters 568-570
running multiple times 571
setting dependencies 570-572

custom error actions and namespaces

-Confirm switch parameter 6-9, 23, 22, 223,
224, 445

Confirmimpact property 224
connection pooling 548
connection throttling 548
Connect-PSSession cmdlet 110
Connect-WSMan cmdlet 110
constants

See also variables

best practices 597

creating 177

definition 153

naming 597

referring to 153
consumers 292
-contains operator 514, 517
Continue cmdlet 501
ConversionFunctions.psl 187
ConvertFrom-String 599
copying text 72
core classes 298
-Count parameter 516
count property 55, 106, 128
countryCode attribute 413
country/region codes 413, 429
CreateAdditionalDC.ps1 467
Create method 396
CreateMultipleUsers.psl 418
CreateOU.psl 396
CreateReadOnlyDomainController.psl 469
CreateRegistryKey.psl 480, 481
creating

aliases 69

folders and files 82

registry drives 88

registry keys 93, 95

temporary environment variables 78

text files 107
-Credential parameter 112, 342, 347
credentials

administrator account 345

alternate 132, 342, 344

remote connections 112, 343-345
Current User, All Hosts profile 279, 289
CurrentUserAllHosts property 279
custom error actions and namespaces 295

607

\d character pattern

608

D

\d character pattern 601
data
evaluating using operators 327
reducing 352, 353
WM, filtering 360
data output, controlling 303
data sets 301
data type aliases 152, 153
data types, constraining 216
date, finding current 339
date object, assigning 333
datetime type 347
DC attribute 400
-Debug switch parameter 12, 476, 478
debugging
See also breakpoints; errors; scripts
bypassing commands 487
cmdlets 492, 501
functions 505, 506, 509
logic errors 478, 479
quitting 493
run-time errors 474-478
scripts 507-509
setting breakpoints 492-500
stepping over functions 502
stepping through scripts 483-488, 509
suspending script execution 486
syntax errors 473, 474
syntax parser 474
trace levels 480-483
tracing scripts 479-483
turning off stepping 488
Debug-Process cmdlet 554
DebugRemoteWMISession.psl 476
[decimal] alias 198
default
parameter sets, specifying 224
registry drives 88
registry key value, assigning 96
Windows PowerShell prompt 76
WMI namespace 375
WMI namespaces, finding 312
default property 90
Default statement 172

DefaultMachineName property 526
DefaultParameterSetName property 224
-Definition parameter 46, 59, 157
definition property 38, 39
Delete method 423
deleting

breakpoints 496, 504, 505, 509

directories 107

expired certificates 75

folders 177

users 422

Windows PowerShell ISE snippets 269,

270, 274

DemoAddOneR2Function.psl 211
DemoBreakFor.psl 167
DemoDoWhile.psl 158
DemoForEach.psl 165
DemoForLoop.psl 163
DemoForWithoutInitOrRepeat.psl 163, 164
DemolfElselfElse.psl 170
Demolf.psl 168
DemoSwitchArray.psl 173
DemoSwitchCase.psl 172
DemoSwitchMultiMatch.psl 173
DemoTrapSystemException.psl 199
DemoWhileLessThan.psl 154
dependencies

adding DSC resource 578-580

setting for file resources 574
DependsOn keyword 570
deprecated qualifiers 381
deprecated WMI classes, finding 381
-Descending switch parameter 35
-Description parameter 268
Desired State Configuration (DSC) See DSC

(Desired State Configuration)

DestinationPath parameter 566
dir command 24
direct querying 299
directories, deleting 107
directory listings 24-29
-directory parameter 81
DirectoryInfo object 44
DirectoryListWithArguments.psl 138
Disable-PSBreakpoint cmdlet 492, 554
Disconnect-WSMan cmdlet 110

$discount variable 203
-Discover switch parameter 436
disk drives 318, 319
$Disk variable 318, 319
-DisplayName parameter 307, 442
distinguishedname attribute 446
DNS servers
adding as domain controllers 466
adding roles 472
assigning to DNS clients 465
installing features 460, 463
renaming 466
restarting 466
viewing features/roles 472
Do keyword 161
Do statement 161
domain controllers
adding as read-only 468, 469
adding to existing domains 465-467
adding to forests 464, 471, 472
checking on remote machines 441
connecting to 442
finding 436
prerequisites 459, 470, 471
domain password policy 440
domains 397, 399
dot-source operator 187
DotSourceScripts.psl 206
dot-sourcing 186, 188, 189
dotted notation 39, 228, 278
[double] alias 198
Do...Until statement 160
DoWhileAlwaysRuns.psl 161
Do..While statement 157-160
casting to ASCII values 159
operating over arrays 158, 159
using the range operator 158
drift, configurations 571, 572
drive-and-file-system analogy 65
-drive parameter 195
$drive variable 195
$driveData variable 195
drives
changing 337
creating 240
global scope 241

enumeration values

DriveType property 318, 319

DSC (Desired State Configuration)
adding resource dependencies 578
calling configurations 574
compiling MOF 574
configuration parameters 568, 569
controlling drift 571, 572
creating configurations 566, 567,

576-578, 580
creating scripts 566, 580
definition 565
importing resource modules 573
modifying environment variables 573-576
resource provider properties 565, 566
running against remote servers 568
setting dependencies 570-572, 574
showing available resource members 573
specifying configuration location 580
starting IntelliSense to display resource
members 573

starting the configuration process 574
viewing existing resources 580
viewing progress 580

$dteDiff variable 333

$dteEnd variable 333

$dteStart variable 333

dynamic classes 298-300

dynamic qualifiers 382

dynamic WMI classes, finding 394

E

\e escape sequence 600

ea alias 143 See also -ErrorAction parameter

echo command 76

Else keyword 170

else statement 516

enabled property 447, 526

Enable-PSBreakpoint cmdlet 492, 554

Enable-PSRemoting cmdlet 114, 115, 135, 345

enabling QuickEdit mode 72

-Encoding parameter 329

EndlessDoUntil.psl 161, 162

Enter-PSSession cmdlet 110, 118, 119, 132, 135,
439, 554

enumeration values 526

609

EnumNetworkDrives method

610

EnumNetworkDrives method 63
environment provider 104

and environment variables 77-79
Environment resource provider 565, 573
environment variables

creating 78, 573

modifying 573-576

on computer, listing 335

removing 79

renaming 79

viewing new 575
$env:PSModulePath variable 230
-eq operator 169
-equals argument 310
error handling

adding 404

incorrect data types 532-536, 546

limiting choices 514-521

missing parameters 511-514

missing rights 521-523

missing WMI providers 523-532

Try...Catch...Finally 538-541, 545, 546
error stacks, clearing 534
-ErrorAction parameter 12, 13, 98,143, 144
errors

See also debugging

Access Denied 295

capturing 539

creating objects 401-404

logic 478, 479

remote connections 112

remote procedure call (RPC) 342

run-time 474-478

scripts 143, 185

scripts, ignoring 295

suppressing messages 199

syntax 473, 474

system exceptions 199

trapping 199

WinRM (Windows Remote

Management) 117

workflows 551

-ErrorVariable parameter 12

escape sequences, in regular expressions 599

est-ParameterSet function 227
-Examples switch parameter 17

execution policies for scripts 177
retrieving 142
setting for current user 142
setting for entire machine 142
turning on options 140, 141
exit command 132
Exit statement 167
Exit-PSSession cmdlet 554
ExpandEnvironmentStrings method 51
expanding strings 155, 163
Export-Alias cndlet 554
Export-Clixml cmdlet 348
Export-Console cmdlet 11, 554
exposing properties of an Alias object 69

F

\f escape sequence 600
feedback, providing xxiv
file names, case sensitivity 85
-File parameter 81, 82

File resource provider 565
FileInfo object 44
-FilePath argument 329
files in folders, listing 63
filesystem provider 80-86
$File variable 328, 329
Filter keyword 204, 212

-Filter parameter 323, 324, 331, 351, 353, 360,

383, 394, 527
filter strings 33
$Filter variable 326
FilterHasMessage.ps1 212
filtering
columns 36
data 351, 360
output 306-308
using CPU time 35
filters 209-213
adding to tables 33
definition 204
options 33
Finally block 539, 546
Find-Module cmdlet 583, 584
[firstCharacter-lastCharacter] character
pattern 601

Flexible Single Master Operation (FSMO)
roles 435-438, 457
folders
deleting 176, 177
listing files in 63
fonts, changing color 333
-Force parameter 81, 95
For keyword 162
For loop 13
For statement, and endless loops 164
-Force switch parameter 12, 46, 95, 115, 574
-ForceDiscover switch parameter 436
Foreach keyword 550
ForEach-Object cmdlet 144, 165, 177, 295,
393,394
ForEach -Parallel workflow activity 552
Foreach statement 165, 166
-ForegroundColor parameter 333
ForEndlessLoop.psl 164
forests
adding domain controllers 464, 471, 472
creating 472
deploying 459-465
Format-List cndlet 26, 72, 77, 78, 99, 303, 315,
317, 326, 328-330, 339, 385, 394, 398, 584
Format-Table cmdlet 29-31, 146, 303, 319, 323,
331, 384, 385, 392
Format-Wide cmdlet 27, 63
formatting code, best practices 594, 596
forscripting registry key 569
freespace property 319
From statement 320
FSMO role holders 435-438, 457
ft alias 384 See also Format-Table cmdlet
FullyQualifiedErrorld property 402
Function keyword 180, 182, 185, 194, 202, 216
function provider 85-86
capabilities 85
file system-based model 85
listing all functions on system 86
FunctionGetIPDemo.psl 206
functions
adding functionality to 214, 215
adding help 191-194
adding -Whatlf support 222, 223
advanced 217

automatic parameter checks 219-221

business logic 202-204

calling like methods 184

checking number of arguments in 220

choosing verbs 182, 184

[cmdletbinding] attribute 217-225

comment-based help 193

complete using Windows PowerShell ISE
snippets 266, 267

copying into modules 246

creating 182, 213-215, 253-256

creating with Windows PowerShell ISE
snippets 266

debugging 505, 506, 509

default parameter sets 224

delimiting script blocks 185

detecting extra arguments 221

displaying contents of 193

dot-sourced 190, 191

enabling cmdlet binding 218

enabling strict mode for 490

filters 204, 209-213

formatting 596

getting help 251

including in scripts 591, 592

library script 186

listing all 107

modifying cmdlet behavior using 26

modifying scripts 205

multiple input parameters 194

naming 182, 216, 594

parameters 183, 184

passing multiple arguments 220

passing values to 183

pipelined input 190, 191

positional parameters 183

promoting readability of 595

providing input to 216

reusing 186-188, 216

script cmdlets 217

signatures 203

storing 216

suppressing error messages 199

tracing features 529

understanding 179-186

using 216

functions

611

gal alias

612

functions (continued)
using comments 594
using type constraints 198
variable scope 184
verb-noun combinations 180
verbose messages 218, 219

G

gal alias 46, 59
gc alias 157
gci alias 70, 337 See also Get-Childltem cmdlet
gcim alias 301, 334 See also Get-CimlInstance
cmdlet
gcm alias 37,43
-ge operator 169
get verb 54
Get-Acl cmdlet 369
Get-ADDefaultDomainPasswordPolicy
cmdlet 440
Get-ADDomain cmdlet 439, 440, 457
Get-ADDomainController cmdlet 436, 437, 441
Get-ADForest cmdlet 439, 457
Get-ADObject cmdlet 437, 442, 457
Get-ADOrganizationalUnit cmdlet 446
Get-ADRootDSE cmdlet 442
Get-ADUser cmdlet 446
Get-Alias cmdlet 18, 45, 59, 157, 317, 336, 554
Get-AllowedComputerAndProperty.psl 520
Get-AllowedComputerAndPropety.psl 521
Get-AllowedComputer function 518, 519
Get-AllowedComputer.psl 519
Get-BiosInformationDefaultParam.psl 513
Get-BiosInformation.psl 512
Get-Childltem cmdlet 24, 59, 67, 79, 100,
239, 335
listing all aliases 107
listing all available properties 103
listing all certificates 103
listing all functions 107
listing certificates 70
listing of environment variables 79
listing registry keys 91, 107
listing variables 100, 107
on the currentuser store 75
piplining results 67
searching for software 92

Get-Choice function 515
Get-ChoiceFunction.psl 515
Get-CimAssociatedInstance cmndlet 385, 388,
390, 394
array indexing 388
errors 388
finding types of classes returned 394
inputobject parameter 388
piping to Get-Member cmdlet 385, 390
Get-CimClass cmdlet 298, 299, 312, 375, 380,
392, 393
finding WMI classes 375
wildcards 375, 379
Get-CimInstance cmndlet 294, 297, 301, 312, 314,
315, 323, 339, 346, 348, 360, 383, 385, 393
reducing instances returned 394
reducing properties returned 394
wildcards 376, 385
Get-Command cmdlet 36-44
Get-Computerinfo function 248, 251
GetComputerinfoworkflow.psl 551
Get-Content cmdlet 84, 157, 177, 193, 518
Get-Counter cmdlet 110
Get-Credential cmdlet 132, 343, 345, 346,
356, 357
Get-Date cmdlet 333, 339
Get-Discount function 202
Get-Doc function 204
GetDrivesCheckAllowedValue.psl 537
GetDrivesValidRange.psl 538
Get-DscResource cmdlet 580
Get-EventLog cmdlet 110
Get-ExecutionPolicy cmdlet 141, 142, 177
Get-FileSystemDrives function 241
GetFolderPath method 280
Get-FreeDiskSpace function 194
Get-FreeDiskSpace.psl 194
Get-Help cmdlet 12, 15, 26, 69, 99, 109
creating an alias for 19
listing cmdlets 99
Get-History cmdlet 336, 339, 554
Get-HotFix cmdlet 110
Get-InstalledModule cmdlet 589
Get-IPObjectDefaultEnabledFormatNonlIP-
Output.psl 208
Get-IPObjectDefaultEnabled.psl 207

Get-IseSnippet cmdlet 269
Get-Item cmdlet 89, 105
listing environment variables 78, 105
viewing registry key values 89
Get-ItemProperty cmdlet 89, 90, 150, 313, 314
accessing registry key values 90
viewing registry key values 89
Get-Job cmdlet 124, 128, 135, 356, 357
Get-Location cmdlet 88
Get-Member cmdlet 44-49, 59, 67, 300, 308,
367, 385, 387, 390, 394
Get-Module cmmdlet 230, 243, 433
Get-MyModule function 242, 243, 431
Get-NetAdapter cmdlet 460, 472
Get-NetConnectionProfile function 233
Get-OperatingSystemVersion function 236
Get-OperatingSystemVersion.psl 182
Get-Process cmdlet 9, 12, 22, 31, 110, 322, 323
Get-PSBreakpoint cmmdlet 492, 496, 503, 554
Get-PsCallStack cmdlet 501
Get-PSCallStack cmdlet 492, 554
Get-PSDrive cmdlet 17, 77, 88, 103
Get-PSProvider cmdlet 66, 67
Get-PSSession cmdlet 110, 119
Get-PSSnapin cmdlet 554
GetRandomFileName method 83
Get-Service cmdlet 110, 306, 307
Get-TextStats function 191
Get-Transaction cmdlet 554
Get-ValidWmiClass function 534
Get-Variable cmdlet 101, 554
Get-Verb cmdlet 3, 54
Get-WimObject cmdlet 385
Get-WindowsFeature cmdlet 397, 398, 432,
460, 472
Get-WinEvent cmdlet 110
Get-WinFeatureServersWorkflow.psl 559
GetWmiClassesFunction.psl 192
Get-Wmilnformation function 535
Get-WmiObject cmdlet 110, 295, 298, 342, 345,
360, 361, 365, 366, 367
Get-WmiProvider function 526, 531
Get-WSManlnstance cmdlet 110
ghy alias 338
gi alias 78 See also Get-ltem cmdlet
global security group 444

HostingModel property

gm alias 81 See also Get-Member cmdlet
gps alias 31
grave accent character See " (backtick) character
grids See tables
group alias 55
group-and-dot 363, 364
Group-Object cmdlet 55
Group Policy, configuring WMI 341
Group resource provider 565
groups, creating with ADSI 406, 407
See also security groups
-GroupScope parameter 444
gsv alias 33
gwmi alias 361, 367

H

handle property 330
[hashtable] alias 198
-Height parameter 52
help
adding for functions 191
comment-based 193
here-string objects 192
specific parameters 229
using functions 251
Help cmdlet 501
help files
suppressing errors during update 13
Update-Help cmdlet 12
updating 12
Help function 17
-help parameter 192
help system
entering 14-19
levels of display 17
output, displaying 17
using wildcards 17
HelpMessage parameter property 229, 257
here-string object 192
hierarchical namespaces 292
Hit Variable breakpoint 496
HKCR drives, checking for 529
home directories, listing 327
HostingModel property 526

613

icm alias

614

icm alias 314, 345
-icontains operator 517
-ld parameter 7
identifying properties of directories 81
identifying the Certificate drive 103
IdentifyServiceAccounts.psl script 328
-identity parameter 436, 444, 450
If statement 98, 164, 166, 243, 516

assignment operators 169, 170

comparison operators 168-170

evaluating arrays 173

evaluating multiple conditions 170
Ifindex property 472
ihy alias 338
impersonation levels 314
ImpersonationLevel property 527
Import-Alias cmdlet 554
Import-Module cmdlet 233, 433
-includemanagementtools parameter 472
index numbers, finding 472
InitializationReentrancy property 527
InitializationTimeoutinterval property 527
InitializeAsAdminFirst property 527
InlineScript activity 554, 560
input parameters

computer 294

localhost 294

namespace 294

root 293

using more than two 200-202
-InputObject parameter 48, 308, 394
Install-ADDomainController cmdlet 468
Install-ADDSDomainController cmdlet 466
Install-ADDSForest cmmdlet 472
InstallationPolicy parameter 589
-InstallDns parameter 466
Install-Module cmdlet 589
instance methods

calling 365-366

definition 361

executing 361

finding relative path 373

terminating 363, 370

InstanceName parameter 568

[int] alias 198

IntelliSense 264, 573

Internet Explorer zone 141

InvocationInfo property 402

Invoke-CimMethod cmdlet 311

Invoke-Command cmdlet 110, 120, 121, 135,
314, 345, 346, 356, 357

Invoke-History cmdlet 339, 554

Invoke-Item cmdlet 73

Invoke-WmiMethod cmdlet 110, 365

Invoke-WSManAction cmdlet 110

[io.path] class 83

IP addresses, assigning 472

ipconfig commands, running 4, 5

ise alias 279

-ltemType parameter 83, 107

J

jobs

cleaning up 127
completion notification 127
creating 134

IDs 123,135

keeping data from 128-131
monitoring 129

naming 124

pipelining objects 128
receiving results 134, 135
removing completed 124
retrieving WMI results 360
running commands as 122
starting new 128

status 127,135

stopping 128

storing returned objects 124, 126
WMI 355-357, 359

Join-Path cmdlet 238, 295, 530

K

-Keep switch parameter 123, 128, 356
-key parameter 481

L

| attribute 413
LastWriteTime property 31, 60
LDAP
See also RDN (relative distinguished name)
naming convention 399
provider 397
-le operator 169
Length property 31
-like operator 169
Limit-EventLog cmdlet 110
limiting choices 514
for parameter values 521
using -contains operator 517-521
using PromptForChoice 514, 515, 544, 545
using Test-Connection to identify computer
connectivity 516
-line parameter 492
List cmmdlet 501
-list parameter 141, 298
-ListAvailable switch parameter 231, 234, 433
listing
aliases 107
environment variables 77
functions 86, 107
mapped drives 63
registry keys 91, 107
variables defined in a session 107
ListNamePathShare.ps1 script 322
ListProcessesSortResults.psl 138
ListShares.ps1 script 320, 322
ListSpecificShares.ps1 script 325
literal quotation marks and default
property 90
literal strings 155, 156
local computer shortcut name 312
-LockedOut parameter 447, 457
Log resource provider 566
logging
adding 324
service accounts 328, 329
logic errors 478, 479
[long] alias 198
Loop keyword 155
looping through collections 167, 177
-It operator 169

ModifyUserProperties.psl

M

Managed Object Format (MOF) See MOF
(Managed Object Format)
Mandatory parameter property 225, 257
MandatoryParameter.psl 513
mandatory parameters 513
mapped drives, listing 63
marque 565
-match operator 87, 169, 599
matching 172-174
-Maximum parameter 339
md alias 83 See also mkdir function
MeasureAddOneR2Function.psl 212
Measure-Object cmdlet 54, 319, 339
-Members parameter 444
membertype attribute 81
-MemberType parameter 46, 47, 81
Method member types 195
-MethodName parameter 311, 394
method notation 490
methods
definition 377
examining 45
listing all available 63
PromptForChoice 514, 544, 545
retrieving with wildcards 48
Microsoft Management Console (MMC)
renaming Active Directory sites 442
starting 399
Microsoft.PowerShelllSE_profile.ps1 279
Microsoft.PowerShell_profile.ps1 279
-Minimum parameter 339
missing registry properties 98
missing rights 522
missing WMI providers
checking for installation 524-532
connecting to namespaces 523
information about 523
mkdir function 83
MMC (Certificates Microsoft Management
Console) 69
-Mode parameter 495
modifying registry property values 97
ModifySecondPage.psl 412
ModifyUserProperties.psl 410

615

module manifest

616

module manifest 188
-module parameter 12, 13, 250, 433
$modulePath variable 238-240
modules
copying files into directories 239
copying functions into 246
copying to module stores 248
creating 246-253, 256, 257
creating drives 240, 241
creating subdirectories 239
definition 230
dependencies 242-244
directory 230, 235
downloading from PowerShell Get 586
expanding names 233
exported commands 250
exporting 253
finding in PowerShell Gallery 582, 587, 589
finding installed 587, 589
folder locations 235
folder naming 236
grouping profile information 285
importing 252
installing 66, 235-246, 248, 252, 253,
256, 257
installing from PowerShell Gallery 588, 589
installing from PowerShell Get 585, 586
listing 235
listing available 230-232, 239
loading 233, 234
locating 230-233
locations 230, 240
names 234
netconnection 233
packaging workflows 547
passing to functions 244
paths 238
PowerShellGet 583
retrieving paths 237
searching by contributor 584
searching descriptions 585
shared 246
sorting by revision history 584
storing profiles 285, 286
uninstalling 586, 589

uninstalling from PowerShell Gallery
588, 589
using from shares 244-246
using in profiles 282
wildcard patterns 233, 234
MOF (Managed Object Format)
compiling 574
creating 566
definition 566
storing 569
more.com utility 17
Move-ADObject cmdlet 446
mred alias 60
mydocuments folder 280
my-function function 479

N

\n escape sequence 600
-Name parameter 69, 78, 83, 99, 150, 307, 444
name parts 399
name property 28, 31, 78, 295, 327, 527
named parameters 226
namespace input parameter 294
-Namespace parameter 293, 301
namespaces
on computer, listing 312
custom error actions and 295
default 312, 313
default WMI value 375
hierarchical 292
information about 296
installed, list of 296
listing classes 312
nesting 294
and objects 293-295
organizing 293, 294
properties 295
providers, listing 312
naming
constants 597
functions 594
variables 594, 597
naming conventions
cmdlets 3
LDAP 399

nouns 54

verbs 54
NDS provider 397
-ne operator 169
nesting namespaces 294
netconnection module 233
network adapters, finding index numbers 472
New-ADGroup cmdlet 444
New-ADOrganizationalUnit cmdlet 443
New-ADUser cmdlet 446, 457
New-Alias cmdlet 18, 554
New-CimSession cmdlet 347, 348, 360
-Newest parameter 129, 135
New-EventLog cmdlet 110
New-lseSnippet cmdlet 268
New-Iltem cmdlet 69, 289

creating aliases 69

creating and assigning values to registry

keys 96

creating environment variables 78

creating text files 107
New-Line function 188, 190
New-ModuleDrive function 241
New-ModulesDrive.psl 241
-NewName parameter 79
New-NetIPAddress cmmdlet 460, 472
New-Object cmdlet 50-52
-NewPassword parameter 446
New-PSDrive cmdlet 88, 240, 530
New-PSSession cmdlet 110, 119
New-TimeSpan cmdlet 333, 339
New-Variable cmdlet 177, 329, 554
New-WSManlnstance cmdlet 110
Next keyword 162
node 566
Node command 580
-NoExit parameter 146
-NolLogo argument 11
nonterminating errors 522
notafter property 75
-notlike operator 169
-notmatch operator 87, 169, 599
-Noun parameter 43
nouns, naming convention 54
NWCOMPAT provider 397

(0

O attribute 400
Object Editor 528
objects
See also OU (organizational unit)
COM-based 61, 62
definition 44
deserialized 124-127
errors 401-404
and namespaces 293-295
renaming 443
retrieving member information 44
retrieving values of 339
storing in variables 50, 124, 127
-Off parameter 488, 492
operating systems, retrieving version
numbers 236
OperationTimeoutinterval property 527
operators
assignment 169, 170
comparison 169, 170
using 327-329
-Option parameter 153
organizational unit (OU) See OU
(organizational unit)
OtherTelephone attribute 410
OU attribute 400
OU (organizational unit)
See also objects
[ADSI] accelerator 396
creating from text files 424
creating on remote machine 443
creating using ADSI 395, 396
moving users to 446
storing user accounts 446
-OutBuffer parameter 12
Out-File cmdlet 328, 329
Out-GridView cmdlet 31-36, 315, 554
Out-Null cmdlet 239
out-of-bound errors
placing limits on parameters 537, 538
using boundary-checking functions 536, 537
output
filtering/sorting 306-308
formatting 26, 27, 30, 31-36

output

617

-OutputPath parameter

618

output (continued)
grouping by size 28
paged, producing 339
pipelining 59
reducing 351, 360
self-updating in filtered tables 34
sorting/filtering 306-308
wide, producing 63
-OutputPath parameter 568
-OutVariable parameter 12
overwriting registry keys 95

P

Package resource provider 566
paged output, producing 339
parallel script blocks 553
parallel workflow activities 552, 555, 559
param keyword 568
Param keyword 201, 216, 217
param statement 512
parameter attribute 224, 225
-Parameter parameter 109
parameter sets 227, 257
parameters
assigning default values 512, 568
assigning positions 257
automatic checks 219-221
checking value validity 532
commonly used 12
configurations 568, 569
identifying 201
input, using more than two 200-202
making mandatory 257
mandatory 513, 514, 546
missing 229, 257, 511-513, 521
missing values 512, 546
named 226
passing multiple 490
placing limits on 537, 538
positional 97, 183
required for Windows PowerShell ISE
snippets 268
specifying for functions 184
supplying values for 53

Windows PowerShell, reducing data 352

ParameterSetName parameter property
227, 257
-PassThru parameter 144
passwords
See also security
changing 456
creating secure strings 446
resetting 446, 457

-path parameter 70, 78, 79, 105, 107, 150, 183,

184, 444
path strings, converting to rich types 593
$path variable 183-185
paths 238
patterns 299 See also wildcards
pause function 87
PerLocalelnitialization property 527
permissions, remote callers 342
persistence 556 See also checkpoints
PerUserlnitialization property 527
PING commands, and Windows 8 client
systems 117
PinToStart.ps1 10
pipeline 228
pipelined data, displaying in tables 31-36
\p{name} character pattern 601
Pop-Location cmdlet 94
pop-up boxes, producing 62, 63
Popup method 62
position message 143
Position parameter property 226, 257
positional parameters 97, 183
postalCode attribute 413
postOfficeBox attribute 413
PowerShell Gallery
configuring as trusted installation 589
configuring installation policy 586
finding 581
installing modules from 585, 588, 589
searching for modules 582, 587
uninstalling modules 588, 589
wildcards 585
PowerShell Get
configuring and using 583-585
configuring as trusted location 586
downloading modules 586
finding installed modules 587

installing modules 586
installing required file 583
PowerShellGet module 583

processes
running 322-324
stopping 22

process lists, sorting 35
profile.psl 279
profiles 275, 276
adding functionality 288, 289
All Users, All Hosts 283, 289
checking for specific 278, 289
cleaning up 285
creating 58, 59, 279, 286, 287, 289
Current User, All Hosts 279, 289
definition 57
determing types to use 280
directory location 280
editing 289
grouping information into modules 285
ISE vs. console 280, 281
locations 280
mydocuments folder location 280
names 279, 280
opening for editing 279
paths 275, 289
single vs. multiple 281, 282
storing information in files 284, 285
storing modules 285, 286
types of 275
usage patterns 280
using files 284, 285
using modules 282
using multiple 281
viewing all for current host 277, 278
program logic 202
PromptForChoice method 514
properties
added by CIM cmdlets 317
of classes 312
definition 38, 39, 377
displaying 302
examining 45
finding for cmdlets 37
hidden files/folders 46
listing all available 103

removing empty 319
resource providers 565, 566
retrieving 315-317
selecting multiple 322-324
selecting specific 321
spacing/capitalization 322

Put method

using -contains operator to test for 519-521

and variables 385
Property member types 195-197

-Property parameter 28, 38, 77, 303, 312, 330,

339, 351, 353, 360, 383, 384, 394
Property set member types 196
property sets 303
-ProtectedFromAccidentalDeletion para-

meter 444
prototype mode 7
providers

class IDs 529

DCOM registration 529

definition 65

handling missing 523-532

installing 297

LDAP 397

listing 297

listing installed 312

in namespaces, listing 312

NDS 397

NWCOMPAT 397

searching for 527, 528

searching registry for 529

system template class 297

WinNT 397

WMI Microsoft Installer (MSI) 332
providing feedback xxiv
proxy function 26
$PSCmdlet variable 227
-PSComputerName parameter 555
PSComputerName property 346
-PSConsoleFile argument 11
PSDesiredStateConfiguration module 573
PSGallery See PowerShell Gallery
psiscontainer property 75
PSModulePath variable 237, 433
-PSPersist parameter 552, 563
Pure property 527
Put method 405, 429

619

qualifier names and tab expansion

620

Q

qualifier names and tab expansion 382
qualifier queries and wildcards 382
-QualifierName parameter 299, 300
queries

against remote computers 294

limiting results 325

particular classes 320

results 301

select * 320

suppressing 445

WQL, reducing data with 353

WQL, using 360
-Query parameter 320, 321, 353
$Query variable 327, 328, 330, 332
querying

classes 346

using classes 299

direct 299

remote systems 346-348
querying abstract WMI classes 382
QuickEdit mode 72
-Quiet switch parameter 516, 546
quotation marks 324

environment variables 51

string values 325

\r escape sequence 599
range operator 158
$rate variable 202
RDN (relative distinguished name)
See also LDAP
as name part 399
attribute types 400
definition 396
verifying 400
reading and writing for files 84
ReadUserInfoFromReg.ps1 149

Receive-Job cmdlet 110, 123, 127, 135, 355,

356, 360
Receive-PSSession cmdlet 110

-Recurse switch parameter 63, 70, 84, 104,

204, 239
recursive commands 294

recursive listings, using custom functions 294

reducing data

with Windows PowerShell parameters 352

with WQL queries 353
reducing returned instances 383
reducing returned properties 383
referencing classes 302
RegExTab.psl 600
Register-WmiEvent cmdlet 110
registry

backing up 94

changing property values 97

editing 94

finding all drives 88

keys, checking for 529

searching for providers 529

setting missing property values 98

storing current location 94
registry drives

checking for 529

creating 530

removing 530, 531
registry keys

accessing stored values 90

creating 93-95

creating and assigning values 96

forscripting 569

listing from a registry hive 107

overwriting existing 95

setting default values 96

testing for properties 93, 94, 98

viewing stored values 89
registry provider

capabilities 88, 90

creating registry drives 88

creating registry keys 93

default drives 88

listing registry keys 91

retrieving registry values 89

searching for software 92

setting default value for registry keys 96

Registry resource provider 566, 569
regular expressions
character patterns 601
escape sequences 599, 600
places to use 599

relative distinguished name (RDN) See RDN
(relative distinguished name)
remote caller permissions 342
remote computers, querying 294
remote connections
alternate credentials 132
cmdlet errors 112
creating sessions 118-120
exiting 119
impersonating users 113
multiple 120
security 112, 339
specifying credentials for 112
stored sessions 119
using WinRM 114-118
remote machines
changing working directory 118
checking domain controllers 441
checking domain password policy 440
configuring Windows PowerShell 114, 115
creating OUs (organizational unit) 443
entering PS sessions 439
importing Active Directory module 439
multiple connections 119
obtaining domain information 439
retrieving BIOS information 118
running commands against multiple 121
verifying operating systems 439
remote procedure call (RPC) error 342
Remote Server Administration Tools (RSAT) 431
remote sessions
alternate credentials 132
capturing output from 118, 119
creating 135
loading Active Directory module 434
storing in a variable 119
RemoteWMISessionNoDebug.psl 476
remoting
alternate credentials 342
bandwidth 348
cmdlets 109-111
configuring 135
connection errors 342
creating a session 118-120
discovering Active Directory 439-442
logged-on users 345

return codes

multiple connections 343

required ports 345

retrieving information 357, 358

specifying credentials 112

storing credentials 343

user permissions 342

using native WMI 345

WMI disadvantages 345

running WMI 345, 346
remotejob type 356
Remove-ADGroupMember cmdlet 445
Remove-Computer cmdlet 110
Remove-EventLog cmdlet 110
Remove-Item cmdlet 75, 80, 84, 107, 177
Remove-Job cmdlet 124, 556
Remove-PSBreakpoint cmdlet 492, 496,

504, 554

Remove-PSDrive cmdlet 105, 530
Remove-PSSession cmdlet 110, 119
Remove-PSSnapin cmdlet 554
RemoveUserFromGroup.psl 445
Remove-Variable cmdlet 554
Remove-WmiObject cmdlet 110
Remove-WSManlinstance cmdlet 110
removing an environment variable 79
removing PS drive mapping 105
Rename-ADObject cmdlet 443, 457
Rename-Computer cmdlet 110, 460
Rename-Item cmdlet 79, 599
renaming environment variables 79
Repeat cmmdlet 501
Replace operator 599
-ReplicationSourceDC parameter 466
#requires statement 242
-Reset parameter 446
Resolve-ZipCode function 198
Resolve-ZipCode.psl 198
Restart-Computer cmdlet 110, 461, 472
restricted execution policy 522
-ResultClassName parameter 394
-ResultSetSize parameter 449
RetrieveAndSortServiceState.psl 146
retrieving registry values 89
retrieving specific variables 101
retrieving WMI association classes 393
return codes 363

621

Root/Cimv2

622

Root/Cimv2 375

RPC error 342

rsat-ad-tools 433, 460

RSAT (Remote Server Administration Tools)
431, 432

run method 51

running processes 22, 322-324

run-time errors 474-478

S

\s character pattern 601
sAMAccountName attribute 405, 406
script blocks
braces 185
definition 155
delimiting on functions 185
InlineScript 554
running statements 552
script cmdlet 217
script execution policy, setting 459
Script method member types 196
-script parameter 492
script property 35
Script resource provider 566
-ScriptBlock parameter 133, 135
ScriptFolderConfig.psl 567
ScriptFolderVersion.psl 569
scripting support, enabling 240
scripts
See also code; debugging
accessing Windows PowerShell with 10
adding error handling 404
avoiding aliases in 592
best practices 591-598
breaking lines of code 144
business logic 202-204
business rules 478
bypassing execution policies 143
calling configurations 569
constants 153, 154
creating 139
creating multiple folders 174-176
debugging 507-509
deleting multiple folders 176, 177
dot-sourcing 186-188

downloading samples xxii
enabling 57

ending 167

errors 143, 295, 473-479
execution policies 140-143, 177
function library 186
impersonation levels 339
including functions in 591, 592
incorrect data types 532-536
logic errors 478

missing parameters 511-513, 521
missing rights 521-523

missing WMI providers 523-532
modifying 204-207
nonterminating errors 522
profiles 57, 284

program logic 202

promoting readability of 593, 594
quotation marks 139, 140
reasons for 137-139

referring to constants 153
restricted execution policy 522
reusing 186-188

running 139, 140

running faster 295

running inside Windows PowerShell 147
running manually 145-148
running outside Windows PowerShell 148
run-time errors 474-478

signing 69

simplifying 314

singularizing strings 150
skipping past errors 144

sorting data 146

status of services 146

stepping through 483-489, 509
stopping processes 144, 145
storing profile information 284, 285
strict mode 479, 488-493

strings 150-152, 155, 156
support options 140, 141
suppressing queries 445
suspending execution of 486
syntax errors 473, 474

syntax parser 474

terminating errors 522

timer, adding 333
tracing 479-483
use-case scenario 511
using canonical aliases in 592
using comments 593
variables 144, 148-153
SDDL 369
SDDLToBinarySD method 369
Search-ADAccount cmmdlet 447, 457
-SearchBase parameter 451
searching
for classes 298
for certificates 74, 75
for software 92
security
See also passwords
controlling execution of cmdlets 6, 7
remote connections 112, 339
security groups 444, 445
Security Descriptor Definition Language
(SDDL) See SDDL
security identifier (SID) See SID (security
identifier)
SecurityDescriptor property 527
select * query 320
Select statement 325
selecting specific data 321
Select-Object cmdlet 36, 297, 301, 303, 304,
310, 312, 315, 319, 322, 344, 378, 380, 394
-Unique switched parameter 394
Select-String cmdlet 302, 599
sequence activity 559
Sequence keyword 559, 563
Sequence workflow activity 553
sequences 562
ServerManager module 397
service accounts 327-329
Service resource provider 566
Set-ADAccountPassword cmdlet 446, 457
Set-Alias cmdlet 554
Set-Content cmdlet 85
Set-DNSClientServerAddress cmdlet 465
Set-ExecutionPolicy cmdlet 140, 177, 240, 268,
459, 522
SetInfo() method 396, 405
Set-ltem cmdlet 96

Split method

Set-ItemProperty cmdlet 97, 98, 482
Set-Location cmdlet 67, 88, 118, 150, 335, 337
and complete drive names 68
changing location of registry drives 88
changing working location 94
switching PS drives 68
working with aliases 66
Set-Propertyltem cmdlet 97
Set-PSBreakpoint cmdlet 492, 554
Set-PSDebug cmdlet 479, 509, 554
Set-PSRepository cmdlet 586, 589
Set-Service cmdlet 110
SetServicesConfig.psl 571
Set-StrictMode cmdlet 490, 491, 554
Set-TraceMode cmdlet 554
Set-Variable cmmdlet 102, 153, 554
set verb 54
Set-Wmilnstance cmdlet 110
Set-WSManlnstance cmdlet 111
shares
listing 327
maximum connections 322
reviewing 320
Shellld variable 101
shortcut keystroke combination 18
shortcut name, using for local computer 312
Should object 599
Show-Command cmdlet 52-54
Show-EventLog cmdlet 111
SID (security identifier) 387
signing scripts 69
SimpleTypingError.psl 489
SimpleTypingErrorNotReported.ps1 490
[single] alias 198
singularizing strings 150
sl alias 67, 70, 118, 337
See also Set-Location cmdlet
snap-ins 65, 66
Snippets directory 268
software, finding installed 332
sort alias 55, 78 See also Sort-Object cmdlet
sort order in tables 32
sorting output 306-308
Sort-Object cmdlet 55, 77, 146, 297, 306,
322,327
Split method 238

623

Split statement

624

Split statement 599
Start-DscConfiguration cmdlet 567, 574, 580
Start-Job cmdlet 122, 128, 135, 360
startName property 327
Start-Service cmdlet 308
Start-Transaction cmdlet 554
Start-Transcript cmdlet 58, 118, 281, 554
static methods 367

and double colons 369

definition 361

finding 368, 373

Invoke cmdlet 373

security 369

WMI 373

[wmiclass] type accelerator 369
st attribute 413
Status property 33
-Step parameter 485, 486, 509
Step-Into cmdlet 501
Step-Out cmdlet 501
Step-Over cmdlet 501
Stop-Computer cmdlet 111
Stop-Job cmdlet 128
StopNotepad.psl 143
StopNotepadSilentlyContinue.psl 144
stopping processes 223
Stop-Process cmdlet 7-9, 22, 144, 223
Stop (Quit) cmdlet 501
Stop-Service cmdlet 308
Stop-Transcript cmdlet 554
Street attribute 400
streetAddress attribute 413
strict mode 479, 488-493
-Strict parameter 489
[string] alias 198
string characters 208
string values 325
strings 151, 152

See also variables

breaking into arrays 238

concatenating 150

expanding 155, 163

literal 155, 156

singularizing 150
subexpressions 534
subject property 74

subroutines 180
SupportsExplicitShutdown property 527
SupportsExtendedStatus property 527
SupportsQuotas property 527
SupportsSendStatus property 527
SupportsShutdown property 527
SupportsThrottling property 527
Suspend-Workflow workflow activity 553
Switch keyword 172
switch parameters 53
Switch statement 599

defining default condition 172

matching 172-174
Switch_DebugRemoteWMISession.psl 477
switching PS drives 68
syntax

retrieving 43

shortening 330, 331
syntax errors in scripts 473, 474
syntax parser 474
-Syntax switch parameter 43
system classes 524, 526
system properties

__Path 365

__RelPath 365, 366

removing 339
system requirements xxi
System.Boolean property types 526, 527
system.DirectoryServices.DirectoryEntry

object 396

System.Int32 property types 526, 527
System.lO.DirectoryInfo object 82
System.lo.FileInfo class 238
System.|O.FileInfo objects 82
System.String class 238
System.String property types 526, 527
System.SystemException class 199
System.UInt32 property types 527

T

\t escape sequence 599
tab completion 24, 46, 51
tab expansion 393
and qualifier names 382
and CIM cmdlets 375

tables
adding filters 33
displaying pipelined data 31
sorting column data 32
TargetObject property 402
telephone settings 416-418
temp variable 82
template files, creating 596
Terminate method 361, 364
terminating errors 522
terminating instance methods 363
directly 363, 373
in Windows PowerShell 2.0 364
using WMI 364, 373
Win32_Process WMI class 370
[wmi] type accelerator 366
Test-ComputerPath.psl 516
Test-Connection cmmdlet 111, 476, 514, 546
Test-DscConfiguration function 571
Test-Mandatory function 225
Test-ModulePath function 236, 239
Test-Path cmdlet 93, 98, 236, 278, 289, 480, 529
determining if a registry key exists 98
registry key property 98
Test-PipedValueByPropertyName function 228
TestTryCatchFinally.psl 539
TestTryMultipleCatchFinally.psl 541
Test-ValueFromRemainingArguments
function 228
Test-WSMan cmdlet 111
text files
creating new 107
reading 177
turning into arrays 429
-Text parameter 268
TextFunctions.psl 188
Then keyword 168
throttling 548
time, finding current 339
timers, adding to scripts 333
-Title parameter 268
-Today parameter 201
$total variable 202
totalSeconds property 333
trace levels 480-483, 487
Trace parameter 479

users

Trace-Command cmdlet 554
tracing features, implementing in
functions 529
tracing scripts 479-483
Trap keyword 199
trusted locations 586
Try block 538, 539
Try...Catch...Finally 546
catching multiple errors 541-543
catching specific errors 542
using 538-541, 545, 546
type accelerators
[wmi] 366
[wmiclass] 369
type constraints 198, 216

U

\u0020 escape sequence 600
UID attribute 400
underlining, sizing to text 188
Undo-Transaction cmdlet 554
uninitialized variables 489, 491
Uninstall-Module cmdlet 589
-Unique switch parameter 394
universal security group, creating 444
UnloadTimeout properties 527
Unlock-ADAccount cmdlet 448, 457
unprotect verb 54
Update-Help cmdlet 12, 13, 99
UpdateHelpTrackErrors.psl 13, 14
updates, errata, and book support xxiii
url attribute 410
use verb 54
UseADCmdletsToCreateOuComputerAndUser.ps1
444

use-case scenario 511
User Account Control (UAC) 521
user account control values 408, 409
User resource provider 566
UserAccountControl attribute 408
user-defined aliases 592
username property 63
users

adding to security groups 444

assigning passwords 446, 457

625

Use-Transaction cmdlet

626

users (continued)
creating 405, 446, 447, 457
creating address pages 412
creating multiple 418, 419
creating multivalued 425-429
currently logged on 63
deleting 422, 423, 429
enabling accounts 446, 447
finding disabled accounts 449-451
finding unused accounts 451-454
locked accounts 447, 448, 457
managing 443-445

modifying organizational settings 420-422

modifying profile settings 414-416

modifying properties 410

modifying telephone settings 416-418

moving to OUs 446

removing from security groups 445

retrieving properties 452

running as different 113

unlocking accounts 447, 457
Use-Transaction cmdlet 554

Vv

\v escape sequence 600
-value parameter 69, 78, 96, 481
ValueFromPipelineByPropertyName
property 228
ValueFromPipeline property 228
ValueFromRemainingArguments parameter
property 228
variable provider 99-101
variable scope 184
variables
See also constants; strings
automatic 148, 149
best practices 597
breakpoint access modes 495
case sensitivity 84
computer environment, listing 335
constraints 152
creating 177
data type aliases 152, 153
definition 148
listing 100, 107

naming 594, 597

printing info for 196

retrieving 101

returned job objects as 126

scripts 144, 148-153

setting breakpoints on 495-499, 509

storing objects in 127

storing returned objects in 124

strings 150-152

uninitialized 489, 491

Windows environment 334-339
verb-noun combinations 180
verb-noun naming convention 54
verbose messages 218, 219, 257
verbose output, directing to text files 14
-Verbose switch parameter 12, 14, 218, 235

526, 528, 574, 580

$VerbosePreference variable 218
verbs

approved list of 184

checking authorized 234

displaying 56

distribution of 55-57

finding patterns 55

get 54

getting list of 54

grouping 55

in naming convention 54

set 54

unapproved 235

unprotect 54

use 54
verifying old executable files 75
-Version argument 11
version property 182, 527

w

\w character pattern 601

-Wait switch parameter 574
WaitForAll resource provider 566
WaitForAny resource provider 566
WaitForSome resource provider 566
Wait-Job cmdlet 127

WbemTest 367

Wend keyword 155

-Whatlf switch parameter 6, 7, 12, 22, 74, 84,
222, 223, 257
whenCreated property 452
where alias See Where-Object cmdlet
Where clause 325, 326
Where method 87
Where-Object cmdlet 60, 66, 67, 81, 111, 153,
310, 599

While loop 154, 156
WhileReadLine.psl 156
While statement 162

constructing 154, 155

using 156
white space, finding in files 601, 602
whoami command 132
-Width parameter 52
wildcard patterns 233, 234, 299
wildcards 382

and qualifier queries 382

finding classes 298, 299

finding cmdlets 36

finding installed modules using 587

PowerShell Gallery 585

using in help 17

using to retrieve methods 48
[wmi] accelerators 197
WIM (Windows Information Model) 355-357
Win32_Bios class 315, 347, 383, 523
Win32_ComputerSystem WMI class 315
Win32_Environment WMI class 334
Win32_LoggedOnUser class 344, 345
Win32_LogicalDisk class 195-197, 318
Win32_LogonSession class 385
Win32_PingStatus class 516
Win32_PNPEntity WMI class 394
Win32_Process class 385
Win32_Product class 525, 528
Win32_Service class 356, 384
Win32_Share class 320, 321
Win32_SystemAccount class 385, 387
Win32_UserAccount class 385, 387, 388
Win32_VideoController WMI class 393
window size, controlling 52
Windows 8, PING command errors 117
Windows 10 Client 3
Windows directory, finding path to 51

Windows PowerShell ISE

Windows Management Instrumentation Tester
(WbemTest) See WbemTest
Windows Management Instrumentation
(WMI) See WMI (Windows Management
Instrumentation)
Windows PowerShell
accessing 10
case sensitivity 24
changing working directory 2
classic remoting 109
code wrapping 324
configuring on remote machines 114, 115
configuring the console 11
deploying 3, 4
displaying verbs 56
DSC (Desired State Configuration) 565
help files 12-19
installing 3
interactivity 3
launch options 11
producing directory listings 2
running as different user 113, 114
running single commands 120-122
security issues 6-9
transcript tool 118
using command-line utilities 4-6
verb distribution 55-57
verb grouping 55
Windows PowerShell console, configuring 11
Windows PowerShell ISE
building commands 260
calling WMI methods 270-272
Commands add-on 260
editing commands 262
finding commands 262
IntelliSense 264
locating commands 260
navigating 260-262
optimal screen resolution 262
reviewing commands 262
running commands from script pane
263, 274
snippets See Windows PowerShell ISE
snippets
Snippets directory 268
starting 259

627

Windows PowerShell ISE snippets

628

Windows PowerShell ISE (continued)
starting from Windows 10 259
turning off Commands add-on 264

Windows PowerShell ISE snippets 266-270
completing functions 266, 267
creating code 266
creating functions 266
creating new 268, 274
definition 266
deleting 269, 270, 274
required parameters 268
using 272, 273

Windows PowerShell profile
creating 58, 59
definition 57

Windows PowerShell remoting
cmdlets 109-111
creating a session 118-120
credentials 342-344
native support for 109
previous versions 116
running WMI 345-347

Windows Remote Management (WinRM)

See WinRM (Windows Remote
Management)

Windows service information 306-308

WindowsFeature resource provider 566

WindowsOptionalFeature resource

provider 566

WindowsProcess resource provider 566

WinNT provider 397

WinRM (Windows Remote Management)
accessing remote systems 114-118
and Windows 10 114, 115
definition 114
errors 117
Windows 8 client systems 117

WMI (Windows Management Instrumentation)
case sensitivity 380
classes 298-300
commands, running on multiple

computers 360
configuring using group policy 341
connecting 312
connecting to, default values 313, 339
consumers 292

deprecated classes 381
disadvantages of 345
dynamic classes 382
elements 293
evaluating return codes 363
filtering classes 379
finding classes 394
finding class methods 377-381
finding dynamic classes 394
finding installed software 332
information, retrieving 360
infrastructure 292
model, described 292
namespaces 296
obtaining specific data 197
providers 292
queries 294, 301-305
querying abstract WMI classes 382
and remoting 345
repository 292
resources 292
retrieving instances 392
retrieving results 360
scripts, simplifying 314
sections 292
service 292
service information, retrieving with
309-311
WMI association classes
finding 385
retrieving 393
WMI class methods, finding 377
WMI classes
finding 394
Win32_BIOS 383
Win32_DisplayConfiguration 381
Win32_PNPEntity 394
Win32_Service 384
Win32_SystemAccount 387
Win32_UserAccount 387, 388
Win32_VideoController 393
WNMI instances, retrieving 383
WMI Microsoft Installer (MSI) 332
WMI query argument 326
wmijob type 356
workflow activities

adding checkpoints 558

core cmdlets as 553

definition 552

disallowed core cmdlets 554
InlineScript 554

list of 552

non-automatic cmdlets 554

parallel 555

using CheckPoint-Workflow 558
Windows PowerShell cmdlets as 553

Workflow keyword 548, 563
workflows

adding checkpoints 556, 562

adding logic with cmdlets 549

adding sequence activities 559, 560

adding sequences 562

checkpointing 556-559

creating 561, 563

creating blocks of sequential
statements 553

creating checkpoints 552, 563

errors 551

handling interruptions with checkpoints 556

ordering 563

packaging in modules 547

performing parallel activities 548, 550

persistence points 547

placing checkpoints 556

reasons to use 547, 548

recovering 556

requirements 548

resuming 556

running against remote computers 563
running on remote servers 555
running parallel statements 552
running statements simultaneously 552
syntax 549
throttling 548
writing 547, 548
working with aliases 66
working with directory listings 80
WQL queries 331, 353, 360
-Wrap parameter 350
Write-Debug cmdlet 476
Write-EventLog cmdlet 111
Write-Host cmndlet 332, 554
Write-Verbose cmdlet 257
wscript.shell 50
wshShell object 63
creating a new instance 50, 51
program ID 51
$wshShell variable 51
WS-Management protocol 114
WSMan provider 66

X

\x20 escape sequence 600
[xml] alias 198

y 4

$zip variable 198

$zip variable

629

About the author

ED WILSON is the Microsoft Scripting Guy and a well-known
scripting expert. He writes the daily Hey Scripting Guy! blog.
He has also spoken at TechEd and at the Microsoft internal
TechReady conferences. He has written more than a dozen
books, including nine on Windows scripting that were published
by Microsoft Press. He has also contributed to nearly a dozen
other books. His newest book with Microsoft Press is Windows
PowerShell Best Practices. Ed holds more than 20 industry
certifications, including Microsoft Certified Systems Engineer
(MCSE) and Certified Information Systems Security Professional
(CISSP). Prior to coming to work for Microsoft, he was a senior
consultant for a Microsoft Gold Certified Partner, where he
specialized in Active Directory design and Microsoft Exchange
implementation. In his spare time, he is writing a mystery novel.
For more about Ed, you can go to ewblog.edwilson.com/ewblog/.

